

Artículo Original

Nutr Clín Diet Hosp. 2025; 45(2):43-51 DOI: 10.12873/452melo

Prevalencia de pressão arterial elevada e associação com variáveis antropométricas, de composição corporal e de estilo de vida em adolescentes de uma cidade do nordeste brasileiro

Prevalence of high blood pressure and association with anthropometric, body composition and lifestyle variables in adolescents in a city in northeast Brazil

Vanêssa da Silva MELO¹, Janatar Stella Vasconcelos de Melo ME MPOMO^{1,2}, Maria Izabel Siqueira DE ANDRADE³, Natália Mayara Menezes DE SOUZA¹, Maria Lucia Diniz ARAUJO, Poliana Coelho CABRAL¹, Alcides da Silva DINIZ¹

- 1 Programa de Pós-graduação em Nutrição, Universidade Federal de Pernambuco (UFPE).
- 2 Unidade Multiprofissional, Hospital Universitário Professor Antunes (HUPAA).
- 3 Faculdade de Nutrição (FANUT), Universidade Federal de Alagoas (UFAL).
- 4 Universidade Católica de Pernambuco (UNICAP).

Recibido: 12/febrero/2025. Aceptado: 3/abril/2025.

RESUMO

Objetivo: Avaliar a prevalência de Pressão Arterial Elevada (PAE) em adolescentes e sua associação com estilo de vida, perfil antropométrico e composição corporal.

Métodos: Trata-se de um estudo transversal, realizado com adolescentes de 12 a 19 anos de escolas públicas de Recife, entre março e abril de 2013. PAE foi definida como valores de pressão sistólica (PAS) > 120 mmHg e/ou pressão diastólica (PAD) > 80 mmHg. Foram coletados dados sociodemográficos, clínicos, antropométricos e de composição corporal, e o estilo de vida foi avaliado pelo consumo alimentar e prática de atividade física.

Resultados: Participaram do estudo 410 adolescentes, sendo 60% do sexo feminino e 63,2% com idade \geq 15 anos. A maioria (60%) era de baixo nível socioeconômico. A prevalência de PAE foi de 48,8%, sendo maior em adolescentes do sexo masculino (RP 1,59), com idade \geq 15 anos (RP 1,7) e em estágio púbere (RP 1,03). Excesso de peso (IMC/I) afetou 27,9% dos adolescentes, obesidade abdominal (avaliada pela circunferência da cintura) foi observada em 16,6%, e gordura corporal

Correspondencia:

Maria Lucia Diniz Araujo mldinizaraujo@hotmail.com excessiva em 45,0%. Todos esses distúrbios nutricionais apresentaram associação com PAE. Na análise ajustada, fatores como sexo masculino (RP ajustada: 1,61), obesidade abdominal (RP ajustada: 1,41) e excesso de peso (RP ajustada: 1,31) mostraram associação significativa com PAE. Para os adolescentes do sexo masculino, idade, altura e circunferência da cintura explicaram quase 50% da variação na PAS (R2 ajustado = 0,482; p<0,001). Para as meninas, o IMC/I explicou 13% da variação na PAS (R2 ajustado = 0,135; p<0,001).

Conclusão: Conclui-se que há alta prevalência de PAE, fortemente associada ao excesso de peso e ao sexo masculino. Portanto, ações de prevenção e controle devem ser prioritariamente direcionadas a este grupo.

PALAVRAS-CHAVE

Hipertensão; Fatores de risco; Epidemiologia; Sedentarismo.

ABSTRACT

Objective: To assess the prevalence of high blood pressure (HBP) in adolescents and its association with lifestyle, anthropometric profile, and body composition.

Methods: This is a cross-sectional study conducted with adolescents aged 12 to 19 years from public schools in Recife, between March and April 2013. HBP was defined as systolic blood pressure (SBP) > 120 mmHg and/or diastolic blood

pressure (DBP) > 80 mmHg. Sociodemographic, clinical, anthropometric, and body composition data were collected, and lifestyle was assessed by dietary intake and physical activity.

Results: A total of 410 adolescents participated in the study, 60% of whom were female and 63.2% were ≥ 15 years old. The majority (60%) were from a low socioeconomic status. The prevalence of HBP was 48.8%, being higher in male adolescents (PR 1.59), aged ≥ 15 years (PR 1.7) and in pubertal stage (PR 1.03). Excess weight (BMI/A) affected 27.9% of adolescents, abdominal obesity (assessed by waist circumference) was observed in 16.6%, and excessive body fat in 45.0%. All these nutritional disorders were associated with HBP. In the adjusted analysis, factors such as male gender (adjusted PR: 1.61), abdominal obesity (adjusted PR: 1.41) and overweight (adjusted PR: 1.31) showed a significant association with HBP. For male adolescents, age, height and waist circumference explained almost 50% of the variation in SBP (adjusted R2 = 0.482; p<0.001). For girls, BMI/A explained 13% of the variation in SBP (adjusted R2 = 0.135; p<0.001).

Conclusion: It is concluded that there is a high prevalence of HBP, strongly associated with excess weight and male gender. Therefore, prevention and control actions should be primarily directed at this group.

KEYWORDS

Hypertension; Risk factors; Epidemiology; Sedentary lifestyle.

ABREVIAÇÕES

DCV: Doença cardiovascular.

HA: Hipertensão arterial.

PAE: Pressão arterial elevada.

HAS: Hipertensão arterial sistêmica.

PAS: Pressão arterial sistólica.

PAD: Pressão arterial diastólica.

CC: Circunferência da cintura.

RCAlt: Relação cintura altura.

IMC: Indice de massa corporal.

QFAA: Questionário de frequência alimentar para adoles-

centes.

IQD: Índice de qualidade da dieta.

SPSS: Statistical package for social sciences.

INTRODUÇÃO

Entre os fatores de risco associados às doenças cardiovasculares (DCV), a pressão arterial elevada (PAE) é um dos mais prevalentes, afetando aproximadamente 1,28 bilhões de adultos mundialmente e contribuindo significativamente para a mortalidade por DCV¹ sendo caracterizada pela elevação persistente dos níveis pressóricos².

Embora a maioria dos diagnósticos de HA ocorra em adultos, existem evidências de que essa condição pode ter início na infância e adolescência³. Dados recentes indicam um aumento na ocorrência de HA entre adolescentes nos últimos anos, especialmente devido à associação com fatores genéticos, epigenéticos, ambientais e sociais².

No Brasil, um estudo nacional abrangente revelou que 14,5% dos adolescentes apresentavam pressão arterial elevada, enquanto 9,6% eram diagnosticados com hipertensão arterial sistêmica (HAS). Especificamente na região Nordeste, a prevalência de PAE em adolescentes foi de 14,0%, com 8,4% apresentando hipertensão arterial⁴.

Esse contexto é agravado pela dificuldade de diagnóstico precoce nessa faixa etária⁵ dada a variabilidade dos valores pressóricos em função de sexo, idade e altura, exigindo parâmetros específicos para avaliação⁶ Ademais, o estilo de vida contemporâneo, caracterizado por maior consumo de alimentos ultraprocessados, baixa prática de atividades físicas e aumento do tempo sedentário e uma alimentação ruim tem contribuído significativamente para a deterioração da saúde cardiovascular em jovens².

Diante desse contexto, este estudo tem como objetivo avaliar a prevalência de pressão arterial elevada em adolescentes de escolas públicas de Recife-PE e identificar os fatores de risco associados, considerando aspectos antropométricos, de composição corporal e de estilo de vida. Compreender esses fatores é essencial para o desenvolvimento de intervenções preventivas eficazes, visando reduzir a carga das doenças cardiovasculares futuras nessa população.

MÉTODOS

Estudo transversal, de base escolar, aninhado a um estudo de coorte prospectivo ("Dislipidemia e sua associação com sobrepeso, sedentarismo e estresse oxidativo em uma coorte de escolares de Recife-PE"), realizado em Recife-PE, entre março e abril de 2013. Participaram adolescentes de 12 a 19 anos, de ambos os sexos, de escolas públicas da cidade. Foram excluídos os que utilizavam medicamentos que alterassem o perfil glicolipídico e gestantes. O estudo foi aprovado pelo Comitê de Ética em Pesquisa em Seres Humanos da Universidade Federal de Pernambuco (CAAE 67814223.4.0000.5208), conforme a Resolução CNS 466/2012

Os dados foram obtidos por meio de entrevistas realizadas em escolas e/ou domicílios. O trabalho de campo foi supervisionado pelos pesquisadores, e os dados foram coletados por uma equipe de técnicos previamente treinados para mensuração de variáveis antropométricas. Adicionalmente, dados sobre o perfil socioeconômico-demográfico, consumo alimen-

tar e estilo de vida dos adolescentes foram coletados por meio de questionário padronizado.

A classificação socioeconômica foi realizada segundo os "Critérios de Classificação Econômica do Brasil" da ABEP agrupando as famílias em alta (A1, A2), média (B1, B2), baixa (C1, C2) e muito baixa (D, E).

A percepção corporal foi avaliada com uma pergunta sobre como os adolescentes percebiam seu corpo na infância, com opções de resposta: "normal", "magra" e "gorda".

A pressão arterial sistólica (PAS) e diastólica (PAD) foi medida com esfigmomanômetro de coluna de mercúrio, em duas leituras separadas por 5 minutos, após repouso. Os valores de referência foram PAE (>120 mmHg para PAS e/ou >80 mmHg para PAD) e HAS (>130 mmHg para PAS e/ou >80 mmHg para PAD)⁷.

A avaliação da maturação sexual foi realizada por autoavaliação utilizando as pranchas de Tanner⁸. O estágio 1 indicava a fase pré-púbere, o estágio 5 a fase adulta, e os estágios 2 a 4 o período puberal. No sexo feminino, analisaram-se as mamas, e no masculino, a genitália, considerando tamanho, forma e características.

A avaliação antropométrica incluiu dupla aferição de peso, estatura e circunferência da cintura (CC), considerando a média dos valores. Diferenças superiores a 100 g no peso ou 0,5 cm na estatura e CC resultaram em medições repetidas para consistência. O peso foi medido com balança eletrônica digital (Plenna-MEA-03140®) com precisão de 100 g, e a estatura, com fita métrica milimetrada (Stanley®) de precisão de 1 mm. A CC foi obtida no ponto médio entre o último arco costal e a crista ilíaca com fita métrica inelástica, sem comprimir os tecidos.

O cálculo da razão cintura/estatura foi baseado na divisão da CC pela estatura em centímetros 9 . A obesidade foi classificada pelo Índice de Massa Corporal (IMC), calculado como o peso (kg) dividido pelo quadrado da estatura (m), utilizando curvas de referência da OMS (OMS, 2007). Os critérios foram: baixo peso (IMC/I < -2 escore z), eutrofia (-2 \leq IMC/I \leq +1 escore z), sobrepeso (+1 < IMC/I \leq +3 escore z) e obesidade (IMC/I > +3 escore z). Posteriormente, os adolescentes foram categorizados em sem excesso de peso (IMC/I \leq +1 escore z) e com excesso de peso (IMC/I > +1 escore z).

A obesidade abdominal foi avaliada pela CC e pela razão CC/altura (RCAlt). Valores acima do percentil 80 ajustados para idade e sexo indicaram obesidade abdominal 10 . Pontos de corte para a RCAlt foram $\geq 0,43$ para meninos e $\geq 0,41$ para meninas com menos de 17 anos 11 e $\geq 0,50$ para adolescentes com 18 anos ou mais 12 .

A gordura corporal foi medida por bioimpedância (Maltron BF-906®), utilizando corrente alternada de 50 Hz em quatro elétrodos. Foram realizadas duas medições e valores acima de

20% para meninos e 25% para meninas foram considerados elevados¹³.

Foi aplicado um questionário de atividade física desenvolvido e validado por Florindo et al.¹⁴, que inclui questões sobre exercícios físicos e atividades de locomoção para a escola. De acordo com os critérios de Pate et al.¹⁵ foram classificados como pouco ativos/sedentários aqueles que acumulavam menos de 300 minutos de atividade física por semana e como suficientemente ativos aqueles que atingiam 300 minutos ou mais por semana.

O comportamento sedentário foi avaliado por meio de um questionário específico¹⁶. As horas sedentárias foram somadas e os adolescentes foram classificados como tendo baixo hábito sedentário (< 4 horas por dia) ou alto hábito sedentário (> 4 horas por dia).

Foi considerado tabagista o adolescente que relatou fumar quatro ou mais cigarros por dia, conforme critérios do Ministério da Saúde¹⁷.

O consumo alimentar foi avaliado utilizando o IQD-adapBr, metodologia descrita por Tomiya et al. ¹⁸. A pontuação final do IQD-adapBr foi categorizada em tercis, classificando as dietas como ruim (–25 a 16,67), moderada (16,68 a 58,34) e boa (58,35 a 100).

Os dados foram digitados em dupla entrada e a consistência testada pelo módulo validate utilizando o programa Epi Info, versão 6,04b (WHO/CDC, Atlanta, GE, USA). As análises estatísticas foram realizadas com o Statistical Package for Social Sciences – SPSS for Windows, versão 13.1 (SPSS Inc., Chicago, IL, USA). Para efeito de interpretação, o limite do erro tipo I foi de até 5% (p \leq 0,05).

As variáveis qualitativas foram descritas como proporções e comparadas através do teste Qui-Quadrado de Pearson ou Qui-quadrado de tendência linear. Foram estimadas as razões de prevalência (RP) bruta e ajustada das características associadas à PAE e seus respectivos intervalos de confiança de 95% (IC 95%). A análise multivariada para identificar preditores independentes de risco para a PAE foi elaborada pelo modelo de Regressão de Poisson com variância robusta.

Foi aplicado o teste de Kolmogorov-Smirnov para avaliar a normalidade da distribuição das variáveis estudadas. Para a avaliação da correlação entre a PAS e a PAD com as variáveis do estudo foi utilizado o coeficiente de Correlação de Pearson (todas as variáveis apresentaram distribuição normal). Para identificação dos preditores independentes dos níveis pressóricos arteriais (PAS e PAD) foi conduzida a análise de regressão linear múltipla.

RESULTADOS

No estudo, foram avaliados 410 adolescentes, com uma predominância de 60,0% do sexo feminino. A maioria dos

participantes (63,2%) estava na faixa etária de 15 anos ou mais, e 67,3% estavam cursando o ensino médio. Pouco mais de 60,0% dos adolescentes pertenciam as classes C, D e E, caracterizando um grupo de baixo nível socioeconômico.

A prevalência de PAE foi de 48,8%, e destes, 17,3% apresentaram HAS, na análise dos componentes isolados, 44,1% apresentaram elevação na PAS e 25,4% na PAD.

No que se refere às características antropométricas e de composição corporal, foi evidenciada uma prevalência de excesso de peso e de obesidade abdominal pela CC de 27,9% [IC95%:1,56-2,23] e 16,6% [IC95%:1,70-2,46], respectivamente. Além disso, o percentual de GC foi considerado excessivo em 45,0% [IC95%:1,12-1,66] dos adolescentes. Entre as características avaliadas, o excesso de peso, a obe-

sidade abdominal e o percentual de gordura corporal foram significativamente associados à PAE na análise bivariada, assim como o sexo masculino e a percepção de excesso de peso durante a infância.

Em relação ao estilo de vida, cerca de 34,5% da amostra foi categorizada como suficientemente ativa, com diferencial estatisticamente significante com relação ao sexo (meninos 47,6% e meninas 21,5%). Em contrapartida, 84,5% apresentaram comportamento sedentário por pelo menos quatro horas diárias, sem diferenças entre os sexos. Contudo, nenhuma dessas variáveis, incluindo o Índice de Qualidade da Dieta para Adolescentes - IQDA-AdapBR, segundo as distribuições em tercis, apresentou associação significativa com a PAE (Tabela 1).

Tabela 1. Características sociodemográficas, antropométricas, composição corporal, atividade física, tempo de lazer sedentário, alimentares, maturação sexual, hábito de fumar e percepção corporal associadas a PAE em adolescentes Recife, Nordeste do Brasil, 2013

Variáveis	PAE Sim n (%)	PAE Não n (%)	Total	aRP (bIC _{95%})	с р
Sexo	•				
Masculino	103 (62,8)	61(37,2)	164(40,0)	1,59(1,31 - 1,94)	0,001
Feminino	97 (39,4)	149 (60,6)	246 (60,0)	1,00	0,001
Idade					
<15 anos	68 (45,0)	83(55,0)	151 (36,8)	1,88 (0,71 - 1,09)	0,292
≥ 15 anos	132(51,0)	127(49,0)	259 (63,2)	1,00	0,292
Maturação sexual					
Púbere	165 (86,9)	180 (86,1)	345 (86,0)	1,03 (0,76 - 1,40)	0.475
Pós Púbere	25 (13,1)	29 (13,8)	54(13,0)	1,00	0,475
Fuma					
Sim	5 (65,5)	3 (37,5)	08 (2,0)	1,28 (0.74 - 2,22)	0,231
Não	195 (48,5)	207 (51,5)	402 (98,0)	1,00	0,231
Como você se consideravad	quando criança?				
Com excesso de peso	55 (68,8)	25 (31,3)	80 (19,7)	1,56 (1,28 - 1,89)	0,001
Normal/magro	144 (44,0)	183 (56,0)	327 (80,3)	1,00	0,001
Indice de Massa corporal					
Com excesso de peso	84 (73,7)	30 (23,3)	114 (27,9)	1,86 (1,56 - 2,23)	0,001
Sem excesso de peso	116 (39,5))	178 (60,5)	294 (72,1)	1,00	0,001
Obesidade abdominal CC					
Com obesidade abdominal	59 (86,8)	09 (13,2)	68 (16,6)	2,10 (1,79 - 2,46)	0,001
Sem obesidade abdominal	141 (41,2)	201 (58,8)	342 (83,4)	1,00	0,001

a RP=Razão de Prevalência; b IC 95% = intervalo de confiança de 95%; c Qui-quadrado com correção de Yates.

Tabela 1 continuação. Características sociodemográficas, antropométricas, composição corporal, atividade física, tempo de lazer sedentário, alimentares, maturação sexual, hábito de fumar e percepção corporal associadas a PAE em adolescentes Recife, Nordeste do Brasil, 2013

Variáveis	PAE Sim n (%)	PAE Não n (%)	Total	aRP (bIC _{95%})	ср			
Obesidade abdominal CC/alt								
Com obesidade abdominal	49 (84,5)	9 (15,5)	58 (14,1)	1,96 (1,67 - 2,31)	0,001			
Sem obesidade abdominal	151 (42,9)	201 (57,1)	352 (85,9)	1,00	0,001			
Gordura Corporal								
Com excesso de GC	102 (59,6)	69 (40,4)	171 (45,0)	1,37 (1,12 - 1,66)	0.002			
Sem excesso de GC	91 (43,5)	118 (56,5)	209 (55,0)	1,00	0,002			
Prática exercício				-				
Não	69 (45,7)	82 (54,3)	151 (36,8)	0,90 (0,73 - 1,11)	0,394			
Sim	131 (50,6)	128 (49,4)	259 (63,2)	1,00				
Quantos minutos por seman	a							
Suficientemente ativo	45 (50,6)	44 (49,4)	89 (34,4)	0,99 (0,77 - 1,28)	0.001			
Pouco ativo/sedentário	86 (50,6)	84 (49,4)	170 (65,6)	1,00	0,001			
Tempo de lazer sedentário								
Maior tempo	108 (47,2)	121 (52,8)	229 (55,9)	1,00	0.522			
Menor tempo	92 (50,8)	89 (49,2)	181 (44,1)	0,07 (0,88 - 1,31)	0,523			
IQDA-AdapBr								
< 1 Tercil	66 (52,4)	60 (47,6)	126 (31,6)	1,14 (0,90 – 1,46)	0,317			
Ente 1 e 3 tercil	57 (45,2)	69 (54,8)	126 (31,6)	0,99 (0,76 – 1.28)	0,947			
> 3 tercil	67 (45,6)	80 (54,4)	147 (36,8)	1,00				

a RP=Razão de Prevalência; b IC 95% = intervalo de confiança de 95%; c Qui-quadrado com correção de Yates.

A Tabela 2 apresenta a razão de prevalência ajustada, no modelo final obtido por regressão de Poisson, após ajustes para potenciais fatores de confusão, a análise de regressão revelou que o sexo masculino (RP ajustada: 1,61; IC95% 1,33-1,94), a obesidade abdominal segundo a CC (RP ajustada: 1,41; IC95% 1,10-1,88), e o excesso de peso pelo IMC (RP ajustada: 1,31; IC95% 1,05-1,80), permaneceram independentemente associados à presença de PAE.

A Tabela 3 apresenta a matriz de correlação estratificada por sexo, entre as variáveis que compõe a pressão arterial (PAS e PAD) e as variáveis independentes do estudo. Observa-se que uma parte considerável das variáveis apresentaram correlações significantes. No sexo masculino, verifica-se que a PAS apresentou uma correlação positiva com a idade e todas as variáveis antropométricas e de composição

corporal, já a PAD não teve associação com a altura nem com o percentual de gordura corporal, mantendo associação positiva com as demais variáveis. Por outro lado, no sexo feminino, verifica-se que tanto a PAS quanto PAD apresentaram uma correlação positiva com as variáveis antropométricas e de composição corporal.

Na regressão linear múltipla (Tabela 4), após a retirada das variáveis que apresentaram multicolinearidade (avaliada pela tolerância e o VIF), pôde-se constatar que nos adolescentes do sexo masculino foi evidenciado que a maior idade, a maior altura e a maior CC explicaram quase 50% da variação na PAS (R² ajustado = 0,396 p<0,001). Por outro lado, para a PAD nenhuma variável explicou qualquer variação. Quanto ao sexo feminino apenas o maior IMC/I explicou 13,0% da variação na PAS (R² ajustado = 0,135 (p<0,001) e

Tabela 2. Razão de prevalência (RP) bruta e ajustada das características associadas a pressão arterial elevada (PAE) em adolescentes, Recife, Nordeste do Brasil, 2013

Variáveis	^a RP _{bruta}	b IC_{95%}	Р	RP _{ajustada}	IC _{95%}	с р
Sexo Masculino	1,59	1,31 - 1,94	<0,001	1,61	1,33 - 1,94	<0,001
Obesidade abdominal dCC	2,10	1,79 - 2,46	<0,001	1,41	1,10 - 1,88	<0,001
Excesso peso atual	1,86	1,56 - 2,23	<0,001	1,32	1,05 - 1,80	<0,001

Regressão de Poisson com variância robusta - modelo ajustado para PAE; aRP: Razão de Prevalência; bIC: Intervalo de Confiança; cp:Teste do Qui-quadrado.

Tabela 3. Matriz de Correlação entre as variáveis antropométricas e clínicas de adolescentes do sexo masculino e feminino, Recife Nordeste do Brasil 2013

Variáveis meninos	N	1	2	3	4	5	6	7	8	9
1. PAS	134	1,00	0,43**	0,28**	0,43**	0,64**	0,57**	0,66**	0,57**	0,47**
2. PAD	134	-	1,00	0,12	0,20**	0,29**	0,26**	0,28**	0,24**	0,12
3. Idade	134	-	-	1,00	0,31**	0,21**	0,01	0,20**	0,12	0,01
4. Altura	134	-	-	-	1,00	0,24**	0,17*	0,37**	0,09	0,16
5. IMC	134	-	-	-	-	1,00	0,94**	0,96**	0,95**	0,80**
6. IMC por idade	134	-	-	-	-	-	1,00	0,89**	0,91**	0,81**
7. CC Média	134	-	-	-	-	-	-	1,00	0,95**	0,78**
8. RC/Altura	134	-	-	-	-	-	-	-	1,00	0,79**
9. % Gordura Corporal	134	-	-	-	-	-	-	-	-	1,00
Variáveis meninas	N	1	2	3	4	5	6	7	8	9
1. PAS	246	1,00	0,63**	-0,01	0,10	0,40**	0,37**	0,34**	0,32**	0,33**
2. PAD	246	-	1,00	-0,00	0.47444	0,26**	0,22**	0,25**		0,22**
			_,~~	-0,00	0,17**	0,20	0,22	0,25	0,21**	0,22
3. Idade	246	-	-	1,00	-0,00	0,10	-0,01	0,25	0,21**	0,12*
4. Altura	246 246	-	,	,	-		,	,		•
			-	1,00	-0,00	0,10	-0,01	0,06	0,06	0,12*
4. Altura	246	-	-	1,00	-0,00 1,00	0,10	-0,01	0,06	0,06	0,12*
4. Altura 5. IMC	246	-	-	1,00	-0,00 1,00 -	0,10 0,06 1,00	-0,01 0,06 0,96**	0,06 0,23** 0,86**	0,06 -0,04 0,86**	0,12* 0,07 0,91**
4. Altura 5. IMC 6. IMC por idade	246 246 244	-	-	1,00	-0,00 1,00 -	0,10 0,06 1,00	-0,01 0,06 0,96** 1,00	0,06 0,23** 0,86** 0,84**	0,06 -0,04 0,86** 0,85**	0,12* 0,07 0,91** 0,93**

Teste de Correlação de Pearson *p<0,05, **p<0,01.

Tabela 4. Regressão linear múltipla para PAS E PAD em adolescentes dos sexos masculino e feminino, Recife, Nordeste do Brasil, 2013

Variáveis independentes	Coeficiente de Regressão**	Р	**R ² ajustado
PAS masculino			'
Idade (meses)	0,126	0,046	
Altura (m)	0,210	0,002	0,482 (p<0,001)
Índice de massa corporal (Kg/m²)	9,156	0,285	U,482 (p<0,001)
Circunferência da cintura (cm)	0,420	0,007	
PAS feminino			'
Índice de massa corporal (Kg/m²)	0,433	0,017	
Circunferência da cintura (cm)	0,044	0,446	0,135 (p<0,001)
%Gordura Corporal	-0,305	0,424	
PAD masculino			'
Altura (m)	0,143	0,105	
Índice de massa corporal (Kg/m²)	0,165	0,374	0,078 (p 0,103)
Circunferência da cintura (cm)	0,080	0,683	
PAD feminino			'
Altura (m)	0,154	0,037	
Índice de massa corporal (Kg/m²)	0,303	0,762	0.076 (= 4.0.001)
Circunferência da cintura (cm)	0,026	0,847	0,076 (p< 0,001)
% Gordura corporal	-0,079	0,631	

^{*}PAS- Pressão Arterial Sistólica; PAD- **Pressão Arterial Diastólica.

para a PAD apenas a maior altura explicou menos de 10% da variação R^2 ajustado = 0.076 (p<0.001).

DISCUSSÃO

Este estudo revelou uma alta prevalência de pressão arterial elevada (PAE) em adolescentes (48,8%), superior à de outros estudos realizados na região Nordeste em períodos similares¹⁹. A elevação pode ser explicada, em parte, pelo perfil de baixa renda da população estudada que é um fator relevante, uma vez que condições socioeconômicas desfavoráveis estão frequentemente associadas a maiores riscos de hipertensão arterial sistêmica (HAS) e outras doenças cardiovasculares. Tal relação foi destacada por Qin et al.²⁰.

A prevalência mais elevada de PAE em adolescentes do sexo masculino corrobora com o estudo de Bloch et al. 4 que demonstrou que tanto a PAE HAS foram mais frequentes en-

tre adolescentes do sexo masculino no Brasil e em todas as regiões. Essa diferença entre os sexos pode ser atribuída ao papel dos hormônios sexuais durante a puberdade, com a testosterona favorecendo maior prevalência de hipertensão em homens, enquanto o estrogênio oferece proteção às mulheres até a menopausa²¹.

A maior prevalência de PAE foi observada em adolescentes mais velhos (>15 anos), atingindo uma taxa de 66%. A alta prevalência de PAE em adolescentes mais velhos pode ser atribuída, em parte, a alterações hormonais e ao rápido crescimento durante a puberdade. Durante o estirão puberal, é comum observar um aumento na pressão arterial, que tende a diminuir após a puberdade²². Essas alterações são compreensíveis, já que mais de 80% dos participantes desta pesquisa com idade superior a 15 anos ainda estavam no estágio puberal no momento do estudo.

No que se refere ao consumo alimentar os resultados deste estudo apontam para uma média de 64,4% na pontuação IQDA-adapBr, sugerindo um padrão dietético moderadamente saudável. Outros estudos também mostraram resultados semelhantes. Esses resultados refletem uma tendência preocupante que acompanha a transição nutricional observada nas últimas décadas. Esta transição é caracterizada pela substituição de alimentos frescos e naturais por produtos ultraprocessados, que possuem alta densidade energética, elevado teor de gordura, açúcar e/ou sódio, baixa quantidade de fibras²³.

A presente pesquisa revelou uma prevalência de excesso de peso de 27%, superando a prevalência de 25,5% relatada em um estudo nacional representativo realizado entre 2013 e 2014⁴. evidenciando os níveis epidêmicos do problema. Conforme documentado em estudos, a maioria dos casos de PAE, podem em parte ser atribuídos à obesidade. Essa associação foi reforçada por uma investigação conduzida por Zhang et al.¹⁰ com jovens chineses de 7 a 18 anos, onde foi identificada uma elevada prevalência de HAS entre aqueles com excesso de peso (19%) e obesidade (23,2%). Esses dados ressaltam a obesidade como um fator comum e desencadeador da hipertensão, o que também foi observado em nosso estudo, onde adolescentes com excesso de peso apresentaram quase o dobro da prevalência de HAS em comparação com aqueles sem sobrepeso.

Dos 16,6% dos adolescentes apresentavam PAE, constatou-se que 86,8% sofriam de obesidade abdominal. Adicionalmente, na presente pesquisa observou-se que os adolescentes com obesidade abdominal pela CC tinham uma razão de prevalência de maior (RP 2,10) para o desenvolvimento de HA do que a RCAlt (RP 1,58), essa relação entre CC e PAE também e observada em outros estudos²⁴. Nesse contexto, o presente estudo mostrou uma maior associação de PAE com CC do que RCAlt, sugerindo que a gordura visceral, acessada pela CC, pode ser melhor preditor de hipertensão na adolescência.

Valer ressaltar ainda que há descobertas de que tanto a CC quanto o IMC têm se mostrado bons preditores de níveis elevados de pressão arterial em todas as fases da vida²⁵. A prevalência crescente de obesidade abdominal e composição corporal inadequada em adolescentes pode ser atribuída à transição nutricional, econômica, social e cultural em curso, marcada pela alteração nos padrões alimentares e no perfil nutricional. Além disso, o sedentarismo e a baixa atividade física desempenham um papel central nesse cenário²⁶.

O presente estudo identificou que 50,6% dos estudantes fisicamente ativos apresentavam PAE. Embora os resultados desta pesquisa não tenham demonstrado significância estatística na redução da PAS e PAD através da atividade física, diversos fatores precisam ser considerados. A alta prevalência de comportamentos sedentários (55,9%) encontrada

neste estudo, pode, em parte, explicar essa falta de correlação, visto que, excesso de comportamentos sedentários aumentam as chances de adquirir HA²⁷.

Os resultados indicam que, no sexo masculino, a idade, altura e CC foram determinantes para explicar a PAS. No grupo feminino, ambas PAS e PAD mostraram correlações positivas com medidas corporais. O que em parte é consistente com investigações anteriores que relatam correlação forte e positiva entre altura, peso e CC com PAS e PAD no sexo masculino e feminino²⁸. Já Rimárová, et al.²⁹ encontraram em meninos, PAS e PAD uma correlações significativas com peso, IMC, altura e CC (p < 0,001). Entretanto, nas meninas, as correlações foram menos intensas que nos meninos. Para PAD, apenas o peso corporal teve impacto significativo (p < 0.01), enquanto altura e IMC mostraram significância menor (p < 0.05). Esses resultados indicaram que a variação da PA pode ser parcialmente atribuída à idade, C/C, IMC e altura. No entanto, diversos fatores constitucionais e ambientais também podem influenciam os níveis pressóricos².

LIMITAÇÕES DO ESTUDO

O estudo apresenta limitações, como a possível superestimação da prevalência de hipertensão, pois a aferição da pressão foi feita em apenas um momento. Além disso, o questionário autopreenchido pode ter gerado viés de memória e informação.

CONCLUSÃO

Os resultados deste estudo indicam que fatores como sexo masculino, obesidade abdominal e excesso de peso estão fortemente associados à hipertensão arterial em adolescentes, mesmo após ajustes estatísticos. As correlações entre medidas antropométricas e os níveis de pressão arterial destacam a influência do perfil corporal na saúde cardiovascular. Esses achados sugerem que adolescentes do sexo masculino, com obesidade abdominal e baixa renda, apresentam risco elevado para hipertensão. Assim, é fundamental implementar intervenções focadas na educação em saúde e mudanças de estilo de vida, especialmente para adolescentes de baixa renda.

REFERENCIAS

- PAHO. NCDs at a Glance: Noncommunicable Disease Mortality and Risk Factor Prevalence in the Americas. 2019.
- Barroso WKS et al.. Diretrizes Brasileiras de Hipertensão Arterial
 2020. Arq Bras Cardiol, 2021. 116(3): 516-658.
- Hao G, Wang X, Treiber, FA, Harshfiled G, et al. Blood Pressure Trajectories From Childhood to Young Adulthood Associated With Cardiovascular Risk: Results From the 23-Year Longitudinal Georgia Stress and Heart Study. Hypertension. 2017; 69 (3): 69, n. 435-442

- Bloch KV, Klein CH, Szklo M, Kuschnir MCC, et al. ERICA: prevalences of hypertension and obesity in Brazilian adolescents. Rev Sau Publ. 2016. 50(1).
- 5. Ewald, DR, Haldeman LA. Risk Factors in Adolescent Hypertension. Global pediatric health. 2016. 3
- 6. Update on the 1987 Task Force Report on High Blood Pressure in Children and Adolescents: A Working Group Report from the National High Blood Pressure Education Program. Pediatrics. 1996. 98 (4): 649-658.
- Précoma DB, Oliveira GMM, Simão AF, Dutra OP, Coelho OR, Izar MCO, et al. Atualização da Diretriz de Prevenção Cardiovascular da Sociedade Brasileira de Cardiologia – 2019. Arq Bras Cardiol. 2019; [online]. ahead print, PP.0-0.
- Tanner, J. Growth at adolescence: Blackwell Scientific Publication Oxford 1962.
- Zhang CX, Shi JD, Huang HY, Feng LM, Ma J. Nutritional status and its relationship with blood pressure among children and adolescents in South China. Eur J Ped. 2012. 171(7): 1073-79.
- Taylor RW, Jones IE, Williams SM, Goulding A. Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3-19 y. Am J Clin Nutr. 2000. 72(2): 490-495.
- Pelegrini A, Silva DAS, Silva JMFDL, Grigillo L, Petroski EL..
 Indicadores antropométricos de obesidade na predição de gordura corporal elevada em adolescentes. Rev Paulista de Ped. 2015. 33():56-62.
- 12. Ashewll M, Hsieh SD. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005. 56 (5): 303-7.
- 13. Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. 1988.
- Florindo AA, Romero A, Peres SV, Silva MVD, Slater B. Desenvolvimento e validação de um questionário de avaliação da atividade física para adolescentes. Rev Saúde Publ 2006, 40 (5): 802-9.
- Pate RR, Freedson PS, Sallis JF, Taylor WC et al. Compliance with physical activity guidelines: prevalence in a population of children and youth. Ann Epidemiol, 2002.12 (5): 303-8.
- Pitanga, FJG, Alves CFA, Pamponet ML, Medina MG, Aquino R. Tempo de tela como discriminador de excesso de peso, obesidade e obesidade abdominal em adolescentes. Braz. J. Kinathrop. Hum. Perform. 2016. 18(5).
- Tabagismo: Foi considerado tabagista o adolescente que relatou fumar quatro ou mais cigarros por dia, conforme critérios do Ministério da Saúde (MS, 2016): MINISTÉRIO DA SAÚDE. Portaria

- $n^{\rm o}$ 761, de 21 de junho de 2016. Disponível em: https://www.inca. gov.br/sites/ufu.sti.inca.local/files//media/document//portaria-n-761-de-21-de-junho-de-2016.pdf. Acesso em: 20 jun. 2022.- Ou BRASIL. Ministério da Saúde. Portaria $n^{\rm o}$ 118, quarta-feira, 22 de junho de 2016.
- Tomiya MTO, Cabral PC. Arruda IKG, Diniz, SA. Association between diet quality index, food and nutrient intake and metabolic parameters in adolescents from Recife, northeastern Brazil. Brit J Nutr. 2022. 128 (3): 477-86
- 19. Oliveira MS, Gonçalves FCLP, de Lira PIC, Vila Nova Filho SL. Eickman SH, Lima MC. Birthweight, postnatal growth and blood pressure in adolescents of low socio economic condition: a cohort study in Northe ast Brazil. J Pedr, 2023. 99 (4): 391-8.
- 20. Qin Z et al. Association of socioeconomic status with hypertension prevalence and control in Nanjing: a cross-sectional study. BMC Public Health, 2022. 22.
- Wójcik M, Starzyk JB, Drodzdz M, Drozdz D. Effects of Puberty on Blood Pressure Trajectories - Underlying Processes. Curr Hypertens Rep. 2023. 25, (7): 117-25.
- 22. Li Y, Dong Y, Zou Z, Gao D at al. Association between pubertal development and elevated blood pressure in children. The Jour Clin Hypert 2021. 23 (8) 1498-1505.
- Fonseca PCA, Ribeiro SAV, Andreoli, CS. De Carvalho CA et al. Association of exclusive breastfeeding duration with consumption of ultra-processed foods, fruit and vegetables in Brazilian children. Eur J Nutr. 2019. 58 (7): 2887-94.
- 24. Tozo TA, Pereira BO, Menezes FJD, Montenegro, CM. Medidas Hipertensivas em Escolares: Risco da Obesidade Central e Efeito Protetor da Atividade Física Moderada-Vigorosa. Arq Bras Card. 2020, 115(1): 42-49.
- Cruz NR, Cardoso PC, Frossard TNS, Ferreira FDO et al. Waist circumference as high blood pressure predictor in school age children. Ciên Saú Col. 2019. 2 (5): 1885-1893.
- Moratoya E, Carvalhaes G, Wander A. Almeida L. Mudanças no padrão de consumo alimentar no Brasil e no mundo. Rev Pol Agríc. 2015. 1 (22).
- Tremblay MS, Leblanc AG, Kho ME, Saundres TJ et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Intern J Beh Nutr Phy Act 2011. 8(1): 98.
- Oliveira AVD, Costa ACPDJ, Pascoal LM, Santos LHD et al. et al. Correlation between antrhopometric indicators and blood pressure in adolescents. Texto & Contexto – Enfermagem. 2014. 23(4): 995-1003.
- Rimarova K, Dorko E, Diabelkova J, Sulinova J. et al. Anthropometric predictors of systolic and diastolic blood pressure considering intersexual differences in a group of selected schoolchildren. Cent Eur J Public Health, 2018. 26.