Eje intestino–riñón: avances recientes y aplicaciones clínicas en nefrología pediátrica y del adulto

Autores/as

  • Vicente Martinez Cardenas Children’s Medical Center. Lake city. Florida. USA. https://orcid.org/0000-0002-6273-2501
  • Vivian R. Mena Miranda Hospital pediátrico Centro. La Habana, Cuba.

DOI:

https://doi.org/10.12873/1089Martinez

Palabras clave:

Eje intestino–riñón; Microbiota intestinal; Enfermedad renal crónica; Pediatría; Ácidos grasos de cadena corta

Resumen

Introducción: El eje intestino–riñón representa la interacción bidireccional entre microbiota intestinal y función renal. Se ha asociado a progresión de enfermedad renal crónica (ERC), inflamación sistémica y complicaciones cardiovasculares. Objetivo: Revisar los hallazgos más recientes (2020–2025) sobre los mecanismos, metabolitos implicados y estrategias terapéuticas relacionadas con el eje intestino–riñón, con énfasis en población pediátrica. Material y método: Se realizó búsqueda sistemática en PubMed, Scopus y Web of Science (enero 2020–junio 2025) con los términos gut-kidney axis, uremic toxins, short-chain fatty acids y children. Se incluyeron estudios originales, revisiones y guías clínicas. Resultados: La disbiosis intestinal aumenta toxinas urémicas (indoxil sulfato, p-cresil sulfato, TMAO), asociadas a inflamación, fibrosis y peor pronóstico renal. Los ácidos grasos de cadena corta ejercen efectos protectores inmunomoduladores. En pediatría, niveles elevados de indoxil sulfato se correlacionan con menor velocidad de crecimiento. Intervenciones como dietas ricas en fibra (KDIGO 2024), probióticos/simbióticos y adsorbentes intestinales (AST-120) muestran beneficio potencial. Conclusiones: El eje intestino–riñón emerge como determinante clave en la progresión de ERC y sus complicaciones. Los metabolitos derivados de la microbiota constituyen biomarcadores y posibles dianas terapéuticas. En población pediátrica se requieren ensayos clínicos para establecer recomendaciones específicas.

Referencias

1. Tsuji K, Uchida N, Nakanoh H, Fukushima K, Haraguchi S, Kitamura S, Wada J. The gut-kidney axis in chronic kidney diseases. Diagnostics (Basel). 2024 Dec 25;15(1):21. doi:10.3390/diagnostics15010021. PMID:39795549; PMCID:PMC11719742. Disponible en: https://pubmed.ncbi.nlm.nih.gov/39795549/

2. Cedillo-Flores R, Cuevas-Budhart MA, Cavero-Redondo I, Kappes M, Ávila-Díaz M, Paniagua R. Impact of gut microbiome modulation on uremic toxin reduction in chronic kidney disease: a systematic review and network meta-analysis. Nutrients. 2025 Apr 3;17(7):1247. doi:10.3390/nu17071247. Disponible en: https://doi.org/10.3390/nu17071247 DOI: https://doi.org/10.3390/nu17071247

3. Tsuji K, Uchida N, Nakanoh H, Fukushima K, Haraguchi S, Kitamura S, Wada J. The gut-kidney axis in chronic kidney diseases. Diagnostics (Basel). 2024 Dec 25;15(1):21. doi:10.3390/diagnostics15010021. PMID:39795549; PMCID:PMC11719742. Disponible en: https://pubmed.ncbi.nlm.nih.gov/39795549/ DOI: https://doi.org/10.3390/diagnostics15010021

4. Wang H, Ainiwaer A, Song Y, Qin L, Peng A, Bao H, et al. Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. Microbiome. 2023 Jan 9;11:3. doi:10.1186/s40168-022-01443-4. Disponible en: https://doi.org/10.1186/s40168-022-01443-4 DOI: https://doi.org/10.1186/s40168-022-01443-4

5. Cheng E, Hung SC, Lin TY. Association of trimethylamine N-oxide and metabolites with kidney function decline in patients with chronic kidney disease. Clin Nutr. 2025 Jan;44:239-247. doi:10.1016/j.clnu.2024.12.001. Epub 2024 Dec 4. PMID:39709651. Disponible en: https://pubmed.ncbi.nlm.nih.gov/39709651/ DOI: https://doi.org/10.1016/j.clnu.2024.12.001

6. Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014 Sep;25(9):1897-1907. doi:10.1681/ASN.2013101062. Epub 2014 May 8. PMID:24812165; PMCID:PMC4147984. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24812165/ DOI: https://doi.org/10.1681/ASN.2013101062

7. Tang Y, Li Y, Wang J. Intestinal metabolite TMAO promotes CKD progression by stimulating macrophage M2 polarization through histone H4 lysine 12 lactylation. Cell Death Differ. 2025 Aug 19 [Epub ahead of print]. doi:10.1038/s41418-025-01554-z. Disponible en: https://www.nature.com/articles/s41418-025-01554-z DOI: https://doi.org/10.1038/s41418-025-01554-z

8. Giordano L, et al. Gut microbial-derived short chain fatty acids enhance kidney proximal tubule cell secretory function. Biomed Pharmacother. 2025;188:114700. doi:10.1016/j.biopha.2025.114700. Disponible en: https://www.sciencedirect.com/science/article/pii/S0753332225004081 DOI: https://doi.org/10.1101/2025.02.20.639317

9. Zhou C, et al. Butyrate enhances renal tubular secretion of uremic toxins via OAT1 and attenuates fibrosis. Nat Commun. 2025;16:3324. doi:10.1038/s41467-025-13245-7

10. Fan Y, Wang Y, Xiao H, Sun H. Advancements in understanding the role of intestinal dysbacteriosis–mediated mucosal immunity in IgA nephropathy. BMC Nephrol. 2024;25:203. doi:10.1186/s12882-024-03646-3. Disponible en: https://bmcnephrol.biomedcentral.com/articles/10.1186/s12882-024-03646-3

11. Fan Y, Wang Y, Xiao H, Sun H. Advancements in understanding the role of intestinal dysbacteriosis–mediated mucosal immunity in IgA nephropathy. BMC Nephrol. 2024;25:203. doi:10.1186/s12882-024-03646-3. Disponible en: https://bmcnephrol.biomedcentral.com/articles/10.1186/s12882-024-03646-3 DOI: https://doi.org/10.1186/s12882-024-03646-3

12. Ebrahimi M, Hooper SR, Mitsnefes MM, Vasan RS, Kimmel PL, Warady BA, Furth SL, Hartung EA, Denburg MR, Lee AM. Investigation of a targeted panel of gut microbiome–derived toxins in children with chronic kidney disease. Pediatr Nephrol. 2025 May;40(5):1759-1770. doi:10.1007/s00467-024-06580-6. Disponible en: https://doi.org/10.1007/s00467-024-06580-6 DOI: https://doi.org/10.1007/s00467-024-06580-6

13. Li C, Lin X, Li Y, Duan J, Cai X. Gut microbiome dynamics of patients on dialysis: implications for complications and treatment. Front Pharmacol. 2025 Apr 25;16:1470232. doi:10.3389/fphar.2025.1470232. Disponible en: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1470232/full DOI: https://doi.org/10.3389/fphar.2025.1470232

14. Chen Z. Kidney transplantation and gut microbiota. Clin Kidney J. 2024;17(8):sfae214. doi:10.1093/ckj/sfae214. Disponible en: https://academic.oup.com/ckj/article/17/8/sfae214/7733822

15. Ikizler TA, Burrowes JD, Byham-Gray LD, Campbell KL, Carrero JJ, Chan W, Fouque D, Friedman AN, Ghaddar S, Goldstein-Fuchs DJ, Kaysen GA, Kopple JD, Teta D, Wang AYM, Cuppari L. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 update. Am J Kidney Dis. 2020 Sep;76(3 Suppl 1):S1-S107. doi:10.1053/j.ajkd.2020.05.006. Erratum in: Am J Kidney Dis. 2021 Feb;77(2):308. doi:10.1053/j.ajkd.2020.11.004. PMID:32829751. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32829751/ DOI: https://doi.org/10.1053/j.ajkd.2020.05.006

16. Liu C, Yang L, Wei W, Fu P. Efficacy of probiotics/synbiotics supplementation in patients with chronic kidney disease: a systematic review and meta-analysis of randomized controlled trials. Front Nutr. 2024;11:1434613. doi:10.3389/fnut.2024.1434613. Disponible en: https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2024.1434613/full DOI: https://doi.org/10.3389/fnut.2024.1434613

17. Lee CL, Liu WJ, Tsai SF. Effects of AST-120 on mortality in patients with chronic kidney disease modeled by artificial intelligence or traditional statistical analysis. Sci Rep. 2024;14:738. doi:10.1038/s41598-024-51498-6. Disponible en: https://www.nature.com/articles/s41598-024-51498-6 DOI: https://doi.org/10.1038/s41598-024-51498-6

18. He M, Wei W, Zhang Y, Xiang Z, Peng D, Kasimumali A, et al. Gut microbial metabolites SCFAs and chronic kidney disease. J Transl Med. 2024;22(1):172. doi:10.1186/s12967-024-04974-6. Disponible en: https://pubmed.ncbi.nlm.nih.gov/38369469/ (PubMed) DOI: https://doi.org/10.1186/s12967-024-04974-6

19. Lim X, Ooi L, Ding U, Wu HHL, Chinnadurai R. Gut Microbiota in Patients Receiving Dialysis: A Review. Pathogens. 2024;13(9):801. doi:10.3390/pathogens13090801. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC11434973/ (PMC) DOI: https://doi.org/10.3390/pathogens13090801

20. Xu Y, Bi W-D, Shi Y-X, Liang X-R, Wang H-Y, Lai X-L, et al. Derivation and elimination of uremic toxins from kidney-gut axis. Front Physiol. 2023;14:1123182. doi:10.3389/fphys.2023.1123182. Disponible en: https://www.frontiersin.org/articles/10.3389/fphys.2023.1123182/full (Frontiers) DOI: https://doi.org/10.3389/fphys.2023.1123182

21. Beker BM, Colombo I, Gonzalez-Torres H, Musso CG. Decreasing microbiota-derived uremic toxins to improve CKD outcomes. Clin Kidney J. 2022;15(12):2214-2219. doi:10.1093/ckj/sfac154. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36381370/ (PubMed) DOI: https://doi.org/10.1093/ckj/sfac154

22. Wakino S, Hasegawa K, Tamaki M, Minato M, Inagaki T. Kidney–gut axis in chronic kidney disease: therapeutic perspectives from microbiota modulation and nutrition. Nutrients. 2025 Jun 9;17(12):1961. doi:10.3390/nu17121961. Disponible en: https://www.mdpi.com/2072-6643/17/12/1961 DOI: https://doi.org/10.3390/nu17121961

Descargas

Publicado

04-12-2025

Cómo citar

[1]
2025. Eje intestino–riñón: avances recientes y aplicaciones clínicas en nefrología pediátrica y del adulto. Nutrición Clínica y Dietética Hospitalaria. 45, 4 (Dec. 2025). DOI:https://doi.org/10.12873/1089Martinez.

Artículos similares

1-10 de 614

También puede Iniciar una búsqueda de similitud avanzada para este artículo.