Caloric restriction mimetics: effects of spermidine and berberine on healthy longevity and prevention of aging-associated diseases.

Autores/as

  • Antonio Fernando Murillo Cancho Universidda de Almería/ Universidad Internacional de La Rioja
  • María del Mar Martín-Latorre Hospital Universitario Torrecárdenas
  • David Lozano-Paniagua Universidad de Almería
  • Bruno José Nievas-Soriano Universidad de Almería

DOI:

https://doi.org/10.12873/451murillo

Palabras clave:

proteostasis, autophagy;, spermidine, berberine;, longevity;, anti-aging

Resumen

Introduction: Aging is a complex biological process associ
ated with the accumulation of cellular damage, loss of pro
teostasis, and mitochondrial dysfunction, which contribute to the development of chronic diseases. Spermidine and berberine are natural compounds with complementary properties that promote healthy longevity by targeting key cellular path ways such as autophagy and mitochondrial biogenesis. 
The objective of this review is to evaluate the mechanisms of
action, benefits, and limitations of spermidine and berberine and to explore their synergistic potential as anti-aging agents in personalized medicine strategies.
Methods: A narrative review of the scientific literature was
conducted to analyze the effects of spermidine and berberine in preclinical and clinical models. Relevant studies focusing on molecular mechanisms, therapeutic  applications, and practical limitations were examined.
Results: Spermidine stimulates autophagy by inhibiting
acetyltransferases, improving protein quality, and reducing
toxic aggregates associated with cellular aging. Berberine activates AMPK and SIRT1, enhancing mitochondrial biogenesis and regulating energy metabolism. Both compounds have shown efficacy in animal models in improving cognitive function, reducing oxidative stress, and preventing metabolic diseases. However, their low bioavailability and the lack of longitudinal studies limit their clinical application.
Discussion: The complementary effects of spermidine and
berberine address proteostasis and cellular bioenergetics si
multaneously. Their combination represents a promising multifactorial approach but requires advances in formulations to optimize absorption and stability. Clinical trials are essential to validate their safety and efficacy in humans.
Conclusions: Spermidine and berberine have significant po
tential as therapeutic agents in anti-aging medicine. Their in
tegration into personalized therapies could improve quality of life and prevent chronic diseases, although additional studies are needed to overcome current limitations.

 

Referencias

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2013;153(6):1194–217. doi:10.1016/j.cell.2013.05.039. DOI: https://doi.org/10.1016/j.cell.2013.05.039

Eisenstein M. Molecular biology: remove, reuse, recycle. Nature. 2014;514:S4. doi:10.1038/514S2a. DOI: https://doi.org/10.1038/514S2a

Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435–64. doi:10.1146/annurev-biochem-060614-033955. DOI: https://doi.org/10.1146/annurev-biochem-060614-033955

Akbari M, Kirkwood TBL, Bohr VA. Mitochondria in the signaling pathways that control longevity and health span. Ageing Res Rev. 2019;54:100940. doi:10.1016/j.arr.2019.100940. DOI: https://doi.org/10.1016/j.arr.2019.100940

Bornstein R, Gonzalez B, Johnson SC. Mitochondrial pathways in human health and aging. Mitochondrion. 2020;54:72–84. doi:10.1016/j.mito.2020.07.007. DOI: https://doi.org/10.1016/j.mito.2020.07.007

Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019;20(7):421–35. doi:10.1038/s41580-019-0101-y. DOI: https://doi.org/10.1038/s41580-019-0101-y

Abdellatif M, Ljubojevic-Holzer S, Madeo F, Sedej S. Autophagy in cardiovascular health and disease. Prog Mol Biol Transl Sci. 2020;172:87–106. doi:10.1016/bs.pmbts.2020.04.022. DOI: https://doi.org/10.1016/bs.pmbts.2020.04.022

Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125(1):85–93. doi:10.1172/JCI73946. DOI: https://doi.org/10.1172/JCI73946

Andréasson C, Ott M, Büttner S. Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep. 2019;20:e47865. doi:10.15252/embr.201947865. DOI: https://doi.org/10.15252/embr.201947865

Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer KJ, Cedillo L, et al. Mitochondrial permeability uncouples elevated autophagy and lifespan extension. Cell. 2019;177(2):299–314.e16. doi:10.1016/j.cell.2019.02.013. DOI: https://doi.org/10.1016/j.cell.2019.02.013

Zimmermann A, Madreiter-Sokolowski C, Stryeck S, Abdellatif M. Targeting the mitochondria-proteostasis axis to delay aging. Front Cell Dev Biol. 2021;9:656201. doi:10.3389/fcell.2021.656201. DOI: https://doi.org/10.3389/fcell.2021.656201

Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 2019;29(3):592–610. doi:10.1016/j.cmet.2019.01.018. DOI: https://doi.org/10.1016/j.cmet.2019.01.018

Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494(7436):201–6. doi:10.1038/nature11866. DOI: https://doi.org/10.1038/nature11866

Curtis R, Geesaman BJ, DiStefano PS. Ageing and metabolism: drug discovery opportunities. Nat Rev Drug Discov. 2005;4(7):569–80. doi:10.1038/nrd1777. DOI: https://doi.org/10.1038/nrd1777

Testa G, Biasi F, Poli G, Chiarpotto E. Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des. 2014;20(18):2950–77. doi:10.2174/13816128113196660699. DOI: https://doi.org/10.2174/13816128113196660699

Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES. Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol. 2000;35(6–7):721–8. doi:10.1016/S0531-5565(00)00150-1. DOI: https://doi.org/10.1016/S0531-5565(00)00137-6

Hui D, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int. 2022;158:111501. doi:10.1016/j.foodres.2022.111501. DOI: https://doi.org/10.1016/j.foodres.2022.111501

Hofer SJ, Carmona-Gutierrez D, Mueller MI, Madeo F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol Med. 2021. doi:10.15252/emmm.202114418. DOI: https://doi.org/10.15252/emmm.202114418

Ingram DK, Roth GS. Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res Rev. 2015;20:46–62. doi:10.1016/j.arr.2014.11.005. DOI: https://doi.org/10.1016/j.arr.2014.11.005

Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. doi:10.1038/nm.4222. DOI: https://doi.org/10.1038/nm.4222

Zhang H, Alsop E, Zuccaro C, Shanahan M, Kolonin M, Gorospe M, et al. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol Cell. 2019;76(1):110–25.e9. doi:10.1016/j.molcel.2019.07.022. DOI: https://doi.org/10.1016/j.molcel.2019.08.005

Hofer SJ, Wilfing F, Lampert F, Tevini J, Romanov N, Wegleiter T, et al. Mechanisms of spermidine-induced autophagy and geroprotection. Nat Aging. 2022. doi:10.1038/s43587-022-00322-9. DOI: https://doi.org/10.1038/s43587-022-00322-9

Chondrogianni N, Sakellari M, Lefaki M, Papaevgeniou N, Gonos ES. Proteasome activation delays aging in vitro and in vivo. Free Radic Biol Med. 2014;71:303–20. doi:10.1016/j.freeradbiomed.2014.03.031. DOI: https://doi.org/10.1016/j.freeradbiomed.2014.03.031

Schroeder S, Hofer SJ, Zimmermann A, Abdellatif M, Montagner M, Kovacs WJ, et al. Dietary spermidine improves cognitive function. Cell Rep. 2021;35(9):108985. doi:10.1016/j.celrep.2021.108985. DOI: https://doi.org/10.1016/j.celrep.2021.108985

Liang Y, Zhou Y, Wu W, Zou H, Duan S, Pan J, et al. eIF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction. Cell Rep. 2021;35(8):108941. doi:10.1016/j.celrep.2021.108941.

Hofer SJ, Wilfing F, Mayr L, Wegleiter T, Sigrist SJ, Braun RJ, et al. Spermidine-induced hypusination preserves mitochondrial and cognitive function during aging. Autophagy. 2021;17(8):2037–9. doi:10.1080/15548627.2021.1918622. DOI: https://doi.org/10.1080/15548627.2021.1933299

Tauc M, Haller N, Mayer B, Degenhardt K, Papadopoulou D. The eukaryotic initiation factor 5A (eIF5A1), the molecule, mechanisms and recent insights into the pathophysiological roles. Cell Biosci. 2021;11:219. doi:10.1186/s13578-021-00727-5. DOI: https://doi.org/10.1186/s13578-021-00733-y

Barba-Aliaga M, Alepuz P. The activator/repressor Hap1 binds to the yeast eIF5A-encoding gene TIF51A to adapt its expression to the mitochondrial functional status. FEBS Lett. 2022;596(13):1809–26. doi:10.1002/1873-3468.14456. DOI: https://doi.org/10.1002/1873-3468.14366

Puleston DJ, Buck MD, Klein Geltink RI, Kyle RL, Caputa G, O’Sullivan D, et al. Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. Cell Metab. 2019;30(2):352–63. doi:10.1016/j.cmet.2019.04.012. DOI: https://doi.org/10.1016/j.cmet.2019.05.003

Lubas M, Pawłowska E, Jedrak P, Boros J, Grzechnik P, Kufel J. eIF5A is required for autophagy by mediating ATG3 translation. EMBO Rep. 2018;19(3):e46072. doi:10.15252/embr.201846072. DOI: https://doi.org/10.15252/embr.201846072

Liang Y, Wu W, Zou H, Duan S, Pan J, Zhou Y. eIF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction. Cell Rep. 2021;35(8):108941. doi:10.1016/j.celrep.2021.108941. DOI: https://doi.org/10.1016/j.celrep.2021.108941

Wang J, Zhu X, Zhang X, Ma C, Lu Y, Song Y, et al. Spermidine alleviates cardiac aging by improving mitochondrial biogenesis and function. Aging (Albany NY). 2020;12(1):650–71. doi:10.18632/aging.102666. DOI: https://doi.org/10.18632/aging.102647

Janssens GE, Houtkooper RH. Identification of longevity compounds with minimized probabilities of side effects. Biogerontology. 2020;21(6):709–19. doi:10.1007/s10522-020-09901-1. DOI: https://doi.org/10.1007/s10522-020-09887-7

Partridge L, Fuentealba M, Kennedy BK. The quest to slow ageing through drug discovery. Nat Rev Drug Discov. 2020;19(8):513–32. doi:10.1038/s41573-020-0067-7. DOI: https://doi.org/10.1038/s41573-020-0067-7

Binh PNT, Soda K, Maruyama C, Kawakami M. Relationship between food polyamines and gross domestic product in association with longevity in Asian countries. Health. 2010;2(11):1390–6. doi:10.4236/health.2010.211206. DOI: https://doi.org/10.4236/health.2010.212206

Kiechl S, Pechlaner R, Willeit P, Notdurfter M, Paulweber B, Willeit J, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. doi:10.1093/ajcn/nqy123. DOI: https://doi.org/10.1093/ajcn/nqy102

Schwarz C, Stekovic S, Wirth M, Benson G, Royer P, Sigrist SJ, et al. Spermidine intake is associated with cortical thickness and hippocampal volume in older adults. Neuroimage. 2020;221:117132. doi:10.1016/j.neuroimage.2020.117132. DOI: https://doi.org/10.1016/j.neuroimage.2020.117132

Wirth M, Benson G, Schwarz C, Köbe T, Grittner U, Rujescu D, et al. The effect of spermidine on memory performance in older adults at risk for dementia: a randomized controlled trial. Cortex. 2018;109:181–8. doi:10.1016/j.cortex.2018.09.014. DOI: https://doi.org/10.1016/j.cortex.2018.09.014

Wirth M, Benson G, Schwarz C, Köbe T, Grittner U, Scharenberg M, et al. Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline (SmartAge)—study protocol for a randomized controlled trial. Alzheimers Res Ther. 2019;11(1):36. doi:10.1186/s13195-019-0484-1. DOI: https://doi.org/10.1186/s13195-019-0484-1

Zhang L, Wu X, Yang R, Chen F, Liao Y, Zhu Z, et al. Effects of berberine on the gastrointestinal microbiota. Front Cell Infect Microbiol. 2020;10:588517. doi:10.3389/fcimb.2020.588517. DOI: https://doi.org/10.3389/fcimb.2020.588517

Hu S, Zhao R, Liu Y, Chen J, Zheng Z, Wang S. Preventive and therapeutic roles of berberine in gastrointestinal cancers. Biomed Res Int. 2019;2019:6831520. doi:10.1155/2019/6831520. DOI: https://doi.org/10.1155/2019/6831520

Rajabi S, Najafipour H, Jafarinejad-Farsangi S, Joukar S, Beik A, Askaripour M, et al. Quercetin, perillyl alcohol, and berberine ameliorate right ventricular disorders in experimental pulmonary arterial hypertension: effects on miR-204, miR-27a, fibrotic, apoptotic, and inflammatory factors. J Cardiovasc Pharmacol. 2021;77(6):777–86. doi:10.1097/FJC.0000000000001015. DOI: https://doi.org/10.1097/FJC.0000000000001015

Lan J, Zhao Y, Dong F, Yan Z, Zheng W, Fan J, Sun G. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia, and hypertension. J Ethnopharmacol. 2015;161:69–81. doi:10.1016/j.jep.2014.11.042. DOI: https://doi.org/10.1016/j.jep.2014.09.049

Zhang M, Lv X, Li J, Meng Z, Wang Q, Chang W, et al. Sodium caprate augments the hypoglycemic effect of berberine via AMPK in inhibiting hepatic gluconeogenesis. Mol Cell Endocrinol. 2012;363(1–2):122–30. doi:10.1016/j.mce.2012.07.019. DOI: https://doi.org/10.1016/j.mce.2012.08.006

Gomes AP, Duarte FV, Nunes P, Hubbard BP, Teodoro JS, Varela AT, et al. Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. Biochim Biophys Acta Mol Basis Dis. 2012;1822(2):185–95. doi:10.1016/j.bbadis.2011.11.003. DOI: https://doi.org/10.1016/j.bbadis.2011.10.008

Yu Y, Zhao Y, Teng F, Li J, Guan Y, Xu J, et al. Berberine improves cognitive deficiency and muscular dysfunction via activation of the AMPK/SIRT1/PGC-1α pathway in skeletal muscle from naturally aging rats. J Nutr Health Aging. 2018;22(6):710–7. doi:10.1007/s12603-018-1054-7. DOI: https://doi.org/10.1007/s12603-018-1015-7

Descargas

Publicado

17-03-2025

Número

Sección

Revisiones

Categorías

Cómo citar

[1]
2025. Caloric restriction mimetics: effects of spermidine and berberine on healthy longevity and prevention of aging-associated diseases. Nutrición Clínica y Dietética Hospitalaria. 45, 1 (Mar. 2025). DOI:https://doi.org/10.12873/451murillo.

Artículos similares

1-10 de 73

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a