Caloric restriction mimetics: effects of spermidine and berberine on healthy longevity and prevention of aging-associated diseases.
DOI:
https://doi.org/10.12873/451murilloPalabras clave:
proteostasis, autophagy;, spermidine, berberine;, longevity;, anti-agingResumen
Introduction: Aging is a complex biological process associ
ated with the accumulation of cellular damage, loss of pro
teostasis, and mitochondrial dysfunction, which contribute to the development of chronic diseases. Spermidine and berberine are natural compounds with complementary properties that promote healthy longevity by targeting key cellular path ways such as autophagy and mitochondrial biogenesis.
The objective of this review is to evaluate the mechanisms of
action, benefits, and limitations of spermidine and berberine and to explore their synergistic potential as anti-aging agents in personalized medicine strategies.
Methods: A narrative review of the scientific literature was
conducted to analyze the effects of spermidine and berberine in preclinical and clinical models. Relevant studies focusing on molecular mechanisms, therapeutic applications, and practical limitations were examined.
Results: Spermidine stimulates autophagy by inhibiting
acetyltransferases, improving protein quality, and reducing
toxic aggregates associated with cellular aging. Berberine activates AMPK and SIRT1, enhancing mitochondrial biogenesis and regulating energy metabolism. Both compounds have shown efficacy in animal models in improving cognitive function, reducing oxidative stress, and preventing metabolic diseases. However, their low bioavailability and the lack of longitudinal studies limit their clinical application.
Discussion: The complementary effects of spermidine and
berberine address proteostasis and cellular bioenergetics si
multaneously. Their combination represents a promising multifactorial approach but requires advances in formulations to optimize absorption and stability. Clinical trials are essential to validate their safety and efficacy in humans.
Conclusions: Spermidine and berberine have significant po
tential as therapeutic agents in anti-aging medicine. Their in
tegration into personalized therapies could improve quality of life and prevent chronic diseases, although additional studies are needed to overcome current limitations.
Citas
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2013;153(6):1194–217. doi:10.1016/j.cell.2013.05.039.
Eisenstein M. Molecular biology: remove, reuse, recycle. Nature. 2014;514:S4. doi:10.1038/514S2a.
Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435–64. doi:10.1146/annurev-biochem-060614-033955.
Akbari M, Kirkwood TBL, Bohr VA. Mitochondria in the signaling pathways that control longevity and health span. Ageing Res Rev. 2019;54:100940. doi:10.1016/j.arr.2019.100940.
Bornstein R, Gonzalez B, Johnson SC. Mitochondrial pathways in human health and aging. Mitochondrion. 2020;54:72–84. doi:10.1016/j.mito.2020.07.007.
Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019;20(7):421–35. doi:10.1038/s41580-019-0101-y.
Abdellatif M, Ljubojevic-Holzer S, Madeo F, Sedej S. Autophagy in cardiovascular health and disease. Prog Mol Biol Transl Sci. 2020;172:87–106. doi:10.1016/bs.pmbts.2020.04.022.
Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125(1):85–93. doi:10.1172/JCI73946.
Andréasson C, Ott M, Büttner S. Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep. 2019;20:e47865. doi:10.15252/embr.201947865.
Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer KJ, Cedillo L, et al. Mitochondrial permeability uncouples elevated autophagy and lifespan extension. Cell. 2019;177(2):299–314.e16. doi:10.1016/j.cell.2019.02.013.
Zimmermann A, Madreiter-Sokolowski C, Stryeck S, Abdellatif M. Targeting the mitochondria-proteostasis axis to delay aging. Front Cell Dev Biol. 2021;9:656201. doi:10.3389/fcell.2021.656201.
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 2019;29(3):592–610. doi:10.1016/j.cmet.2019.01.018.
Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494(7436):201–6. doi:10.1038/nature11866.
Curtis R, Geesaman BJ, DiStefano PS. Ageing and metabolism: drug discovery opportunities. Nat Rev Drug Discov. 2005;4(7):569–80. doi:10.1038/nrd1777.
Testa G, Biasi F, Poli G, Chiarpotto E. Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des. 2014;20(18):2950–77. doi:10.2174/13816128113196660699.
Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES. Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol. 2000;35(6–7):721–8. doi:10.1016/S0531-5565(00)00150-1.
Hui D, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int. 2022;158:111501. doi:10.1016/j.foodres.2022.111501.
Hofer SJ, Carmona-Gutierrez D, Mueller MI, Madeo F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol Med. 2021. doi:10.15252/emmm.202114418.
Ingram DK, Roth GS. Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res Rev. 2015;20:46–62. doi:10.1016/j.arr.2014.11.005.
Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. doi:10.1038/nm.4222.
Zhang H, Alsop E, Zuccaro C, Shanahan M, Kolonin M, Gorospe M, et al. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol Cell. 2019;76(1):110–25.e9. doi:10.1016/j.molcel.2019.07.022.
Hofer SJ, Wilfing F, Lampert F, Tevini J, Romanov N, Wegleiter T, et al. Mechanisms of spermidine-induced autophagy and geroprotection. Nat Aging. 2022. doi:10.1038/s43587-022-00322-9.
Chondrogianni N, Sakellari M, Lefaki M, Papaevgeniou N, Gonos ES. Proteasome activation delays aging in vitro and in vivo. Free Radic Biol Med. 2014;71:303–20. doi:10.1016/j.freeradbiomed.2014.03.031.
Schroeder S, Hofer SJ, Zimmermann A, Abdellatif M, Montagner M, Kovacs WJ, et al. Dietary spermidine improves cognitive function. Cell Rep. 2021;35(9):108985. doi:10.1016/j.celrep.2021.108985.
Liang Y, Zhou Y, Wu W, Zou H, Duan S, Pan J, et al. eIF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction. Cell Rep. 2021;35(8):108941. doi:10.1016/j.celrep.2021.108941.
Hofer SJ, Wilfing F, Mayr L, Wegleiter T, Sigrist SJ, Braun RJ, et al. Spermidine-induced hypusination preserves mitochondrial and cognitive function during aging. Autophagy. 2021;17(8):2037–9. doi:10.1080/15548627.2021.1918622.
Tauc M, Haller N, Mayer B, Degenhardt K, Papadopoulou D. The eukaryotic initiation factor 5A (eIF5A1), the molecule, mechanisms and recent insights into the pathophysiological roles. Cell Biosci. 2021;11:219. doi:10.1186/s13578-021-00727-5.
Barba-Aliaga M, Alepuz P. The activator/repressor Hap1 binds to the yeast eIF5A-encoding gene TIF51A to adapt its expression to the mitochondrial functional status. FEBS Lett. 2022;596(13):1809–26. doi:10.1002/1873-3468.14456.
Puleston DJ, Buck MD, Klein Geltink RI, Kyle RL, Caputa G, O’Sullivan D, et al. Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. Cell Metab. 2019;30(2):352–63. doi:10.1016/j.cmet.2019.04.012.
Lubas M, Pawłowska E, Jedrak P, Boros J, Grzechnik P, Kufel J. eIF5A is required for autophagy by mediating ATG3 translation. EMBO Rep. 2018;19(3):e46072. doi:10.15252/embr.201846072.
Liang Y, Wu W, Zou H, Duan S, Pan J, Zhou Y. eIF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction. Cell Rep. 2021;35(8):108941. doi:10.1016/j.celrep.2021.108941.
Wang J, Zhu X, Zhang X, Ma C, Lu Y, Song Y, et al. Spermidine alleviates cardiac aging by improving mitochondrial biogenesis and function. Aging (Albany NY). 2020;12(1):650–71. doi:10.18632/aging.102666.
Janssens GE, Houtkooper RH. Identification of longevity compounds with minimized probabilities of side effects. Biogerontology. 2020;21(6):709–19. doi:10.1007/s10522-020-09901-1.
Partridge L, Fuentealba M, Kennedy BK. The quest to slow ageing through drug discovery. Nat Rev Drug Discov. 2020;19(8):513–32. doi:10.1038/s41573-020-0067-7.
Binh PNT, Soda K, Maruyama C, Kawakami M. Relationship between food polyamines and gross domestic product in association with longevity in Asian countries. Health. 2010;2(11):1390–6. doi:10.4236/health.2010.211206.
Kiechl S, Pechlaner R, Willeit P, Notdurfter M, Paulweber B, Willeit J, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. doi:10.1093/ajcn/nqy123.
Schwarz C, Stekovic S, Wirth M, Benson G, Royer P, Sigrist SJ, et al. Spermidine intake is associated with cortical thickness and hippocampal volume in older adults. Neuroimage. 2020;221:117132. doi:10.1016/j.neuroimage.2020.117132.
Wirth M, Benson G, Schwarz C, Köbe T, Grittner U, Rujescu D, et al. The effect of spermidine on memory performance in older adults at risk for dementia: a randomized controlled trial. Cortex. 2018;109:181–8. doi:10.1016/j.cortex.2018.09.014.
Wirth M, Benson G, Schwarz C, Köbe T, Grittner U, Scharenberg M, et al. Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline (SmartAge)—study protocol for a randomized controlled trial. Alzheimers Res Ther. 2019;11(1):36. doi:10.1186/s13195-019-0484-1.
Zhang L, Wu X, Yang R, Chen F, Liao Y, Zhu Z, et al. Effects of berberine on the gastrointestinal microbiota. Front Cell Infect Microbiol. 2020;10:588517. doi:10.3389/fcimb.2020.588517.
Hu S, Zhao R, Liu Y, Chen J, Zheng Z, Wang S. Preventive and therapeutic roles of berberine in gastrointestinal cancers. Biomed Res Int. 2019;2019:6831520. doi:10.1155/2019/6831520.
Rajabi S, Najafipour H, Jafarinejad-Farsangi S, Joukar S, Beik A, Askaripour M, et al. Quercetin, perillyl alcohol, and berberine ameliorate right ventricular disorders in experimental pulmonary arterial hypertension: effects on miR-204, miR-27a, fibrotic, apoptotic, and inflammatory factors. J Cardiovasc Pharmacol. 2021;77(6):777–86. doi:10.1097/FJC.0000000000001015.
Lan J, Zhao Y, Dong F, Yan Z, Zheng W, Fan J, Sun G. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia, and hypertension. J Ethnopharmacol. 2015;161:69–81. doi:10.1016/j.jep.2014.11.042.
Zhang M, Lv X, Li J, Meng Z, Wang Q, Chang W, et al. Sodium caprate augments the hypoglycemic effect of berberine via AMPK in inhibiting hepatic gluconeogenesis. Mol Cell Endocrinol. 2012;363(1–2):122–30. doi:10.1016/j.mce.2012.07.019.
Gomes AP, Duarte FV, Nunes P, Hubbard BP, Teodoro JS, Varela AT, et al. Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. Biochim Biophys Acta Mol Basis Dis. 2012;1822(2):185–95. doi:10.1016/j.bbadis.2011.11.003.
Yu Y, Zhao Y, Teng F, Li J, Guan Y, Xu J, et al. Berberine improves cognitive deficiency and muscular dysfunction via activation of the AMPK/SIRT1/PGC-1α pathway in skeletal muscle from naturally aging rats. J Nutr Health Aging. 2018;22(6):710–7. doi:10.1007/s12603-018-1054-7.
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2025 Nutrición Clínica y Dietética Hospitalaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)