Neuroprotective effect of cooking black Chenopodium quinoa (quinoa) flakes in mice subjected to ethanol damage

Authors

DOI:

https://doi.org/10.12873/

Keywords:

Chenopodium quinoa, Neuroprotection, Ethanol, Oxidative Stress, Lipoperoxidation

Abstract

Introduction: The increase in the older adult population has meant the appearance of neurodegenerative diseases, which are linked to habits and customs, including diet. Today it is known that the consumption of foods that are a source of phytonutrients (antioxidants) is associated with better conservation of nervous tissue.

Objective: To determine the neuroprotective effect of a decoction of black quinoa (Chenopodium quinoa) flakes against oxidative stress and neurodegeneration induced by ethanol in a murine model.

Methods: Thirty male Mus musculus mice were randomized into five groups (n=6) receiving the following treatments for 14 days: group I colloidal medium + physiological saline; group II colloidal medium + ethanol 1.8 g/kg intraperitoneally; group III vitamin E + ethanol 1.8 g/kg intraperitoneally; groups IV and V suspension of black quinoa flakes 5 mL/kg and 15 mL/kg, respectively + ethanol 1.8 g/kg intraperitoneally. Brain tissue was analyzed to determine lipoperoxidation (TBARS), glutathione (GSH) levels, and histopathological changes.

Results: The quinoa decoction significantly reduced ethanol-induced lipoperoxidation, with the low dose being more effective (42.05% inhibition, p<0.05) than the high dose (26.15% inhibition, p>0.05). However, treatment with quinoa did not restore GSH levels, which were found to be significantly depleted in the ethanol group. Histological analysis revealed that the decoction, especially at the high dose, attenuated ethanol-induced neuronal damage, including edema and morphological alterations in cortical and cerebellar cells.

Conclusion: The black quinoa decoction demonstrates notable neuroprotective activity against ethanol-induced toxicity, mitigating lipoperoxidation and structural neuronal damage.

Author Biographies

  • Lizeth Alicia Palomino Sierra de Calle, Universidad Nacional Mayor de San Marcos

    Licenciada en Nutrición, egresada de la Universidad Nacional Mayor de San Marcos.

  • Frank Brandon Samaniego Tiahuallpa, Escuela Profesional de Nutrición - Facultad de Medicina - Universidad Nacional Mayor de San Marcos

    Licenciado en Nutricion, con estudio en maestria de Nutrición con mención en Nutrición Clínica.

  • Oscar Gustavo Huamán Gutiérrez, Universidad Nacional Mayor de San Marcos

    Licenciado en Nutrición, Magister en Bioquímica, Doctor en Ciencias de la Salud.

    Miembro permanente en el Instituto de Investigación en Bioquímica y Nutrición

References

1. Garcés M. Estudio sobre las enfermedades neurodegenerativas en España y su impacto económico y social. 2016.

2. Pla Rodríguez A. Importancia de los mecanismos de degradación de proteínas en la neurodegeneración causada por el abuso de alcohol: papel de los receptores TLR4. [Valencia]: Universidad Politécnica de Valencia; 2014.

3. Santamaría del Ángel A. Daño oxidativo y enfermedades neurodegenerativas. In: Martínez Moreno M, editor. Radicales libres y estrés oxidativo Aplicaciones médicas. 2008.

4. López González GV, Porcal Quinta W. Estrés oxidativo / nitro-oxidativo como blanco terapéutico en enfermedades neurodegenerativas. In: Neuroprotección en enfermedades neuro y heredo degenerativas. OmniaScience; 2014. p. 157–90.

5. Jurcau MC, Jurcau A, Diaconu RG. Oxidative Stress in the Pathogenesis of Neurodegenerative Diseases. Stresses. 2024 Dec 1;4(4):827–49.

6. Orfali R, Alwatban AZ, Orfali RS, Lau L, Chea N, Alotaibi AM, et al. Oxidative stress and ion channels in neurodegenerative diseases. Front Physiol. 2024;15.

7. Martí Prats L. Dual motor responses elicited by ethanol administered into the pVTA of ratas: implications for the development of a new strategy for alcohol - relapse treatment. [Valencia]: Universitat de Valencia; 2015.

8. Almansa Frías I. Efecto del consumo crónico de etanol sobre el cerebro de rata. Tratamiento con naltrexona. [Valencia]: Universidad Cardenal Herrera; 2011.

9. Colado Mejía MI, O’Shea Gaya E. Efecto del consumo intensivo y repetido de etanol sobre la integridad de la barrera he matoencefálica. Implicación de los receptores toll-like 4 (TLR4). [Madrid]: Universidad Complutense de Madrid; 2017.

10. Gil-Mohapel J, Bianco CD, Cesconetto PA, Zamoner A, Brocardo PS. Ethanol exposure during development, and brain oxidative stress. In: Neuroscience of Alcohol: Mechanisms and Treatment. Elsevier; 2019. p. 493–503.

11. Hernández JA, López-Sánchez RC, Rendón-Ramírez A. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage. Vol. 2016, Oxidative Medicine and Cellular Longevity. Hindawi Publishing Corporation; 2016.

12. Kruman II, Henderson GI, Bergeson SE. DNA damage and neurotoxicity of chronic alcohol abuse. Vol. 237, Experimental Biology and Medicine. 2012. p. 740–7.

13. Klein JA, Ackerman SL. Oxidative stress, cell cycle, and neurodegeneration. Journal of Clinical Investigation. 2003 Mar;111(6):785–93.

14. Shukla D, Goel A, Mandal PK, Joon S, Punjabi K, Arora Y, et al. Glutathione Depletion and Concomitant Elevation of Susceptibility in Patients with Parkinson’s Disease: State-of-the-Art MR Spectroscopy and Neuropsychological Study. ACS Chem Neurosci. 2023 Dec 20;14(24):4383–94.

15. Vongthip W, Nilkhet S, Boonruang K, Sukprasansap M, Tencomnao T, Baek SJ. Neuroprotective mechanisms of luteolin in glutamate-induced oxidative stress and autophagy-mediated neuronal cell death. Sci Rep. 2024 Dec 1;14(1).

16. Jurcau A, Ardelean AI. Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Vol. 10, Biomedicines. MDPI; 2022.

17. Arias Rodríguez R, Toma Zárate JP, Aguilar Felices EJ, Ramírez Roca EG, Shimabuku Azato R, Suárez Cunza S. Neuroprotección del extracto hidroalcohólico de las hojas de Satureja brevicalyx ‘wayra muña’ en un modelo animal de hiperoxia e hipoxia-isquemia. Anales de la Facultad de Medicina [Internet]. 2012;73(3):215–9. Available from: http://www.redalyc.org/articulo.oa?id=37925140008

18. Pathan S, Siddiqui RA. Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients. 2022 Feb 1;14(3).

19. Lin M, Han P, Li Y, Wang W, Lai D, Zhou L. Quinoa secondary metabolites and their biological activities or functions. Molecules. 2019;24(13).

20. Varela L, Chávez H, Gálvez M, Méndez F. Características del deterioro cognitivo en el adulto mayor hospitalizado a nivel nacional. Revista de la Sociedad Peruana de Medicina Interna. 2004;17(2):37–42.

21. Mitoma H, Manto M, Shaikh AG. Mechanisms of ethanol-induced cerebellar ataxia: Underpinnings of neuronal death in the cerebellum. Int J Environ Res Public Health. 2021 Aug 2;18(16).

22. Ramezani A, Goudarzi I, Lashkarboluki T, Ghorbanian MT, Abrari K, Salmani ME. Role of Oxidative Stress in Ethanol-induced Neurotoxicity in the Developing Cerebellum. Iranian Journal of Basic Medical Sciences www.mums.ac.ir [Internet]. 2012;15(4):965–74. Available from: www.mums.ac.ir

23. La Fata G, Weber P, Mohajeri MH. Effects of Vitamin E on Cognitive Performance during Ageing and in Alzheimer’s Disease. Nutrients. 2014 Nov 28;6(12):5453–72.

24. Kilicarslan You D, Fuwad A, Lee KH, Kim HK, Kang L, Kim SM, et al. Evaluation of the Protective Role of Vitamin E against ROS-Driven Lipid Oxidation in Model Cell Membranes. Antioxidants. 2024 Sep 1;13(9).

25. Zhang L, Dang B, Lan Y, Zheng W, Kuang J, Zhang J, et al. Metabolomics Characterization of Phenolic Compounds in Colored Quinoa and Their Relationship with In Vitro Antioxidant and Hypoglycemic Activities. Molecules. 2024 Apr 1;29(7).

26. Al-Qabba MM, El-Mowafy MA, Althwab SA, Alfheeaid HA, Aljutaily T, Barakat H. Phenolic profile, antioxidant activity, and ameliorating efficacy of chenopodium quinoa sprouts against CCl4-induced oxidative stress in rats. Nutrients. 2020 Oct 1;12(10):1–15.

27. Yang C, Zhu X, Liu W, Huang J, Xie Z, Yang F, et al. Quantitative analysis of the phenolic compounds and antioxidant activities of six quinoa seed grains with different colors. LWT. 2024 Jul 1;203.

28. Dong YS, Wang JL, Feng DY, Qin HZ, Wen H, Yin ZM, et al. Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage. Int J Med Sci. 2014 Jan 28;11(3):282–90.

Downloads

Published

2025-09-17

How to Cite

[1]
2025. Neuroprotective effect of cooking black Chenopodium quinoa (quinoa) flakes in mice subjected to ethanol damage. Nutrición Clínica y Dietética Hospitalaria. 45, 3 (Sep. 2025). DOI:https://doi.org/10.12873/.

Similar Articles

1-10 of 45

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>