Identification of bioactive compounds of thiatin (Scoparia dulces)  from the Los Pinos Research and Technology Transfer Center

Authors

  • Jhon Michael Cedeño Veliz Facultad de Agrociencias de la Universidad Técnica de Manabí https://orcid.org/0009-0005-5236-832X
  • Wagner Antonio Gorozabel Muñoz Universidad Técnica de Manabí

DOI:

https://doi.org/10.12873/454cedeno

Keywords:

antioxidants, antimicrobials, agroindustry.

Abstract

Introduction:
Scoparia dulcis (Tiatina) is a medicinal plant with antioxidant, antimicrobial, and anti-inflammatory properties, whose scientific study supports therapeutic and agro-industrial applications. This research evaluated the antioxidant and antimicrobial potential of leaf and stem extracts collected at the Centro de Investigación y Transferencia Tecnológica (CITT) Los Pinos, using chromatographic and spectroscopic techniques.

Objectives:
To characterize the bioactive compounds of S. dulcis, determine its antioxidant and antimicrobial properties, and evaluate its activity against Escherichia coli and Staphylococcus aureus.

Materials and Methods:
Total phenols, flavonoids, and antioxidant capacity (ABTS and DPPH) were analyzed using one-way ANOVA, considering the plant part as the independent variable. Antimicrobial activity was assessed with a three-way factorial ANOVA, including plant part, bacterial strain, and extract concentration (25, 50, and 100%).

Results:
Leaves showed significantly higher concentrations of phenols and flavonoids, resulting in superior antioxidant capacity compared to stems. Regarding antimicrobial activity, leaf extracts produced larger inhibition zones, with S. aureus being more sensitive than E. coli, and showing a dose-dependent effect. Correlation analysis indicated positive associations between phenols, flavonoids, and antioxidant activity, whereas antimicrobial action appeared to depend on additional secondary metabolites.

Conclusions:
Leaves of Scoparia dulcis contained higher levels of phenolic and flavonoid compounds, which correlated with greater antioxidant capacity and more effective antimicrobial activity, particularly against Staphylococcus aureus. These findings highlight the potential of S. dulcis as a source of bioactive metabolites with promising applications in health and industry.

References

Álvarez, D., & Sosa , K. (2024). Análisis de la capacidad antioxidante del extracto hidroalcohólico en brotes de Scoparia dulcis mediante las técnicas de DPPH y ABTS (Bachelor's thesis).Obtenido de: https://dspace.ups.edu.ec/handle/123456789/28752

Anilkumar, K. (2023). Sourcing sweet healing: Unveiling the medicinal potentials of Scoparia dulcis in contemporary healthcare. International Journal of Chemical Studies. Este artículo detalla las propiedades farmacológicas de la Scoparia dulcis, incluyendo sus capacidades antioxidantes, antimicrobianas y antiinflamatorias. www.chemijournal.com/archives/?year=2016&vol=4&issue=1&ArticleId=12373 DOI: https://doi.org/10.22271/chemi.2016.v4.i1b.12373

Ávila, E. (2009). Aprovechamiento de la Scoparia dulcis scrophulariaceae, Oenocarpus batagua Arecaceae, y Solanum brugmancia Solanaceae, en la producción de una pomada abtiinflamatoria (Bachelor's thesis). Obtenido de: https://dspace.ups.edu.ec/bitstream/123456789/6927/1/UPS-QT0 2481.pdf

Jabonline. P. (2024). Evaluating the medicinal properties of Scoparia dulcis. Este estudio enfatiza el potencial de esta planta en la reducción del estrés oxidativo y la protección cel aplicaciones agroindustriales en productos funcionales. Disponible aquí.

Jiang, Z., Sung, J., Wang, X., Zhang, Y., Wang, Y., Zhou, H., & Wen,L. (2021). A review on the phytochemistry and pharmacology of the herbScoparia dulcisL. for the potential treatment of metabolic syndrome. RSC Advances, 11(50), 31235–31259. https://doi.org/10.1039/d1ra05090g

López, X. (2021). Utilización del extracto de sangorache (Amaranthus quitensis) en la industria alimentaria. Escuela Superior Politécnica de Chimborazo. Riobamba. obtenido de : http://dspace.espoch.edu.ec/handle/123456789/17060

Mishra, M. R., Mishra, A., Pradhan, D. K., Panda, A. K., Behera, R. K., & Jha, S. (2013). Antidiabetic and Antioxidant Activity of Scoparia dulcis Linn. Indian Journal of Pharmaceutical Sciences, 75(5), 610. Obtenido de : https://pmc.ncbi.nlm.nih.gov/articles/PMC3877526/

Moyón ,M. (2014). Determinación de la actividad antifúngica de los extractos del Escancel (Aerva Sanguinolenta), Teatina (Scoparia Dulcis L), Sangorache (Amaranthus Hybridus L.) frente a Trichoderma, Penicillium, Aspergillus. Escuela Superior Politécnica de Chimborazo. Riobamba. Obtenido de : http://dspace.espoch.edu.ec/handle/123456789/3699

Naranjo. C. (2014). Evaluación de la actividad hipoglicemiante in vivo del componente flavónico de Scoparia Dulcis L (Bachelor's thesis, Escuela Superior Politécnica de Chimborazo).

Pawar, V., Sarawade, R., (2020). Neuroprotective effect ofScoparia dulcis plant extract against Parkinson’s model of excitotoxicity in rats and zebrafish model. 18(4).352–368.Plantaginaceae-ScopariadulcisL. Obtenido de : http://publish.plantnetproject.org/project/riceweeds_es/collection/collection/information/details/SCFDUPhytochemicals(Guevara,2005).ResearchGate.

Sánchez, E. (2021). Actividad antimicrobiana “in vitro” del extracto hidroetanólico de eryngium foetidum frente a cepas de escherichia coli, staphylococo aureus y pseudomona aeruginosa (Master's thesis). Obtenido de : https://dspace.uniandes.edu.ec/handle/123456789/14227

Zulfiker, M., Rahman,M., Hossain, K., Hamid, K., Mazumder,H., & Rana,S. (2010). In vivo analgesic activity of ethanolic extracts of two medicinal plants-Scoparia dulcis L. and Ficus racemosa Linn. Biol Med, 2(2), 42-8. Obtenido de : https://www.researchgate.net/profile/KaiserHamid/publication/235998383_In_vivo_analgesic_activity_of_ethanolic_extracts_of_two_medicinal_plantsScoparia_dulcis_L_And_Ficus_racemosa_Linn/links/57143dac08aeff315ba35c90/In-vivo-analgesic-activity-of-ethanolic-extracts-of-two-medicinal-plants-Scoparia-dulcis-L-And-Ficus-racemosa-Linn.pdf

Antonić, B., Jančíková, S., Dordević, D., Tremlová, B., & Gallo, M. (2021). Common trends and differences in antioxidant activity of plant extracts—A comparison of ABTS, DPPH, and FRAP assays. Antioxidants, 10(12), 1885. https://doi.org/10.3390/antiox10121885 Frontiers DOI: https://doi.org/10.3390/antiox10121885

Jiang, Z., Sung, J., Wang, X., Zhang, Y., Wang, Y., Zhou, H., & Wen, L. (2021). A review on the phytochemistry and pharmacology of the herb Scoparia dulcis L. for the potential treatment of metabolic syndrome. RSC Advances, 11(50), 31235–31259. https://doi.org/10.1039/D1RA05090G PMC DOI: https://doi.org/10.1039/D1RA05090G

Krysa, M., Szymańska-Chargot, M., & Zdunek, A. (2022). A review of FT-IR and FT-Raman fingerprints of selected classes of food and plant bioactive compounds. Food Chemistry, 393, 133430. https://doi.org/10.1016/j.foodchem.2022.133430 MDPI DOI: https://doi.org/10.1016/j.foodchem.2022.133430

Lin, H.-D., Lee, Y.-C., Chiang, C.-Y., Lin, Y.-J., Shih, C. Y., Tsai, R.-K., Lin, P.-Y., Lin, S.-Z., Ho, T.-J., & Huang, C.-Y. (2023). Protective effects of Scoparia dulcis L. extract on high glucose-induced injury in human retinal pigment epithelial cells. Frontiers in Nutrition, 10, 1085248. https://doi.org/10.3389/fnut.2023.1085248 PMC DOI: https://doi.org/10.3389/fnut.2023.1085248

Oulahal, N., & Degraeve, P. (2022). Phenolic-rich plant extracts: Antibacterial activity, mechanisms of action, and practical applications. Frontiers in Microbiology, 13, 894333. https://doi.org/10.3389/fmicb.2022.894333 No se puede determinar el nombre.

Rahman, M., Sidrat-Ul-Muntaha, A., Zamri, Y., Attahir, S., Mulyana, R., & Fitriani, F. (2023). A new diterpenoid of Indonesian Scoparia dulcis Linn: Isolation and cytotoxic activity against MCF-7 and T47D cell lines. [Journal]. PMCID: PMC10459870. https://pmc.ncbi.nlm.nih.gov/articles/PMC10459870/ PMC

Ramón, C., & Gil-Garzón, M. A. (2021). Efecto de los parámetros de operación de la extracción asistida por ultrasonido en la obtención de polifenoles de uva: Una revisión. TecnoLógicas, 24(51), e1822. https://doi.org/10.22430/22565337.1822 revistas.itm.edu.co DOI: https://doi.org/10.22430/22565337.1822

Rumpf, J., Burger, R., & Schulze, M. (2023). Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. International Journal of Biological Macromolecules, 233, 123470. https://doi.org/10.1016/j.ijbiomac.2023.123470 PubMed DOI: https://doi.org/10.1016/j.ijbiomac.2023.123470

Zhang, G., Yang, Y., Memon, F. U., Hao, K., Xu, B., Wang, S., Wang, Y., Wu, E., Chen, X., Xiong, W., & Si, H. (2021). A natural antimicrobial agent: Antibacterial effect and mechanism of compound phenolic acid on Escherichia coli based on tandem mass tag proteomics. Frontiers in Microbiology, 12, 738896. https://doi.org/10.3389/fmicb.2021.738896 Frontiers DOI: https://doi.org/10.3389/fmicb.2021.738896

Zou, L., Li, H., Wang, L., Yang, M., & Liu, X. (2022). A review of the application of spectroscopy to flavonoids from medicine and food homology materials. Molecules, 27(23), 8150. https://doi.org/10.3390/molecules27238150 PMC DOI: https://doi.org/10.3390/molecules27227766

Islam, M., Malakar, S., Rao, M. V., Kumar, N., & Sahu, J. K. (2023). Recent advancement in ultrasound-assisted novel technologies for the extraction of bioactive compounds from herbal plants: A review. Food Science and Biotechnology, 32(13), 1763–1782. https://doi.org/10.1007/s10068-023-01346-6 PMC DOI: https://doi.org/10.1007/s10068-023-01346-6

Yusoff, M. M., Zulkifli, N. A., & others. (2022). Ultrasound-assisted extraction (UAE): A review on principles, parameters, and applications in plant bioactives. Food Research International, 157, 111270. https://doi.org/10.1016/j.foodres.2022.111270 PMC DOI: https://doi.org/10.1016/j.foodres.2022.111268

Kozmelj, T. R., Cemazar, M., Ščančar, J., & Kolar, M. (2024). A comparative evaluation by EPR, UV-Vis spectroscopy, and spectrophotometric assays (ABTS, DPPH, FRAP, Folin–Ciocalteu). Antioxidants, 13(5), 819. https://doi.org/10.3390/antiox13050819 PMC

Lee, Y., Kim, S., Cho, H., & Park, S. (2022). Functional characterization of three diterpene synthases from Scoparia dulcis. Plants, 11(24), 3453. https://doi.org/10.3390/plants11243453 PMC DOI: https://doi.org/10.3390/plants11243453

Oulahal, N., & Degraeve, P. (2021). Antibacterial mechanisms of phenolic acids and plant phenolics. Frontiers in Microbiology, 12, 753518. https://doi.org/10.3389/fmicb.2021.753518 Frontiers DOI: https://doi.org/10.3389/fmicb.2021.753518

Xiao, J., Kai, G., & Chen, X. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(3), 315–322. https://doi.org/10.1002/fft2.10 DOI: https://doi.org/10.1002/fft2.10

Álvarez Díaz, A. D., & Sosa Triviño, M. K. (2024). Análisis de la capacidad antioxidante del extracto hidroalcohólico en brotes de Scoparia dulcis mediante las técnicas de DPPH y ABTS (Tesis de grado). Universidad Politécnica Salesiana, Guayaquil, Ecuador. Disponible en: https://dspace.ups.edu.ec/handle/123456789/28752

Downloads

Published

2025-11-25

Issue

Section

Research articles

Categories

How to Cite

[1]
2025. Identification of bioactive compounds of thiatin (Scoparia dulces)  from the Los Pinos Research and Technology Transfer Center. Nutrición Clínica y Dietética Hospitalaria. 45, 4 (Nov. 2025). DOI:https://doi.org/10.12873/454cedeno.

Similar Articles

1-10 of 26

You may also start an advanced similarity search for this article.