Effect of thermal treatment on β-carotene retention in carrot (Daucus carota L) and pumpkin (Curcubita maxima Duchesne y Lam): implications for domestic cooking and industrial processing
DOI:
https://doi.org/10.12873/Keywords:
β-carotene, carrot, squash, drying, fryingAbstract
Introduction: Fruits and vegetables such as carrot and pumpkin are important sources of β-carotene, a compound with antioxidant properties. However, its content can be affected by thermal processing methods.
Objectives: To evaluate the effect of frying and hot-air drying on the β-carotene content in carrot (Daucus carota L.) and pumpkin (Cucurbita maxima Duchesne and Lam), in order to identify thermal conditions that favor its preservation.
Material and Methods: The raw materials were physicochemically characterized. Frying treatments were applied at 160°C, 170°C, and 180°C for 6, 8, and 10 minutes, and drying treatments at 60°C, 70°C, and 80°C for 2, 3, 4, and 5 hours. The β-carotene content was then evaluated.
Results: In carrot samples, increasing the drying temperature to 80°C resulted in lower β-carotene loss (3.549 mg/100g) compared to 60°C (2.421 mg/100g). A similar pattern was observed in pumpkin, with values at 80°C of 2.875 mg/100g versus 1.467 mg/100g at 60°C. During frying, a slight increase in β-carotene retention was noted with rising temperatures in carrots (1.7387 mg/100g, 2.0005 mg/100g, 2.2119 mg/100g) and pumpkin (0.9845 mg/100g, 0.9110 mg/100g, 0.8925 mg/100g).
Discussion: The lower loss of β-carotene at 80 °C may be due to nutrient concentration from dehydration and the reduction of catalytic effects that degrade it. Heat breaks physical barriers and cell membranes, increasing its bioaccessibility. In frying, fat and tissue softening enhance its solubility, but retention was lower than in drying.
Conclusions: The food matrix plays a key role in the bioaccessibility of phytochemicals. Both temperature and processing time significantly affected the β-carotene content.
References
1. Ballco P, Gracia A. Tackling nutritional and health claims to disentangle their effects on consumer food choices and behaviour: A systematic review. Food Quality and Preference. 1 de octubre de 2022;101:104634.
2. Saba A, Sinesio F, Moneta E, Dinnella C, Laureati M, Torri L, et al. Measuring consumers attitudes towards health and taste and their association with food-related life-styles and preferences. Food Quality and Preference. 1 de abril de 2019;73:25-37.
3. Appleton KM, Dinnella C, Spinelli S, Morizet D, Saulais L, Hemingway A, et al. Consumption of a High Quantity and a Wide Variety of Vegetables Are Predicted by Different Food Choice Motives in Older Adults from France, Italy and the UK. Nutrients. 23 de agosto de 2017;9(9):E923.
4. Pem D, Jeewon R. Fruit and Vegetable Intake: Benefits and Progress of Nutrition Education Interventions- Narrative Review Article. Iran J Public Health. octubre de 2015;44(10):1309-21.
5. Tanumihardjo SA. Carotenoids: Health Effects. En: Caballero B, editor. Encyclopedia of Human Nutrition (Third Edition) [Internet]. Waltham: Academic Press; 2013 [citado 18 de mayo de 2022]. p. 292-7. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780123750839000453
6. Murray MT, Capelli B. 57 - Beta-Carotene and Other Carotenoids. En: Pizzorno JE, Murray MT, editores. Textbook of Natural Medicine (Fifth Edition) [Internet]. St. Louis (MO): Churchill Livingstone; 2020 [citado 25 de mayo de 2022]. p. 443-450.e2. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780323430449000571
7. Barzee TJ, El- Mashad HM, Zhang R, Pan Z. Chapter 12 - Carrots. En: Pan Z, Zhang R, Zicari S, editores. Integrated Processing Technologies for Food and Agricultural By-Products [Internet]. Academic Press; 2019 [citado 18 de febrero de 2022]. p. 297-330. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780128141380000125
8. González-Peña MA, Lozada-Ramírez JD, Ortega-Regules AE. Carotenoids from mamey (Pouteria sapota) and carrot (Daucus carota) increase the oxidative stress resistance of Caenorhabditis elegans. Biochemistry and Biophysics Reports. 1 de julio de 2021;26:100989.
9. Lerfall J. Carotenoids: Occurrence, Properties and Determination. En: Caballero B, Finglas PM, Toldrá F, editores. Encyclopedia of Food and Health [Internet]. Oxford: Academic Press; 2016 [citado 4 de marzo de 2022]. p. 663-9. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780123849472001197
10. Knockaert G, Pulissery SK, Lemmens L, Van Buggenhout S, Hendrickx M, Van Loey A. Isomerisation of carrot β-carotene in presence of oil during thermal and combined thermal/high pressure processing. Food Chemistry. 1 de junio de 2013;138(2):1515-20.
11. Xanthopoulou MN, Nomikos T, Fragopoulou E, Antonopoulou S. Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Research International. 1 de junio de 2009;42(5):641-6.
12. Hussain A, Kausar T, Sehar S, Sarwar A, Ashraf AH, Jamil MA, et al. A Comprehensive review of functional ingredients, especially bioactive compounds present in pumpkin peel, flesh and seeds, and their health benefits. Food Chemistry Advances. 1 de octubre de 2022;1:100067.
13. Kulczyński B, Gramza-Michałowska A, Królczyk JB. Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita maxima). Sustainability. enero de 2020;12(4):1305.
14. Paris HS, DAUNAY MC, PITRAT M, JANICK J. First Known Image of Cucurbita in Europe, 1503–1508. Annals of Botany. 1 de julio de 2006;98(1):41-7.
15. Nayak B, Liu RH, Tang J. Effect of Processing on Phenolic Antioxidants of Fruits, Vegetables, and Grains—A Review. Critical Reviews in Food Science and Nutrition. 7 de junio de 2015;55(7):887-918.
16. Biswas AK, Sahoo J, Chatli MK. A simple UV-Vis spectrophotometric method for determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT - Food Science and Technology. 1 de octubre de 2011;44(8):1809-13.
17. Márquez Cardozo CJ, Molina Hernández D, Caballero Gutiérrez BL, Ciro Velásquez HJ, Restrepo Molina DA, Correa Londoño G, et al. Physical, physiological, physicochemical and nutritional characterization of pumpkin ( Cucurbita maxima) in postharvest stage cultivated in Antioquia-Colombia. Revista Facultad Nacional de Agronomía Medellín. diciembre de 2021;74(3):9735-44.
18. Jacobo-Valenzuela N, Zazueta-Morales J de J, Gallegos-Infante JA, Aguilar-Gutierrez F, Camacho-Hernandez IL, Rocha-Guzman NE, et al. Chemical and Physicochemical Characterization of Winter Squash (Cucurbita moschata D.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 30 de mayo de 2011;39(1):34-40.
19. Karabacak C, Karabacak H. FACTORS AFFECTING CAROTENOID AMOUNT IN CARROTS (Daucus Carota). E-journal of New World Sciences Academy. 29 de abril de 2019;14:29-39.
20. Goula AM, Adamopoulos KG. Kinetic Models of β-Carotene Degradation During Air Drying of Carrots. Drying Technology. 28 de mayo de 2010;28(6):752-61.
21. Eim VS, Urrea D, Rosselló C, García-Pérez JV, Femenia A, Simal S. Optimization of the Drying Process of Carrot (Daucus carota v. Nantes) on the Basis of Quality Criteria. Drying Technology. 11 de junio de 2013;31(8):951-62.
22. Schieber A, Weber F. 5 - Carotenoids. En: Carle R, Schweiggert RM, editores. Handbook on Natural Pigments in Food and Beverages [Internet]. Woodhead Publishing; 2016 [citado 28 de mayo de 2023]. p. 101-23. (Woodhead Publishing Series in Food Science, Technology and Nutrition). Disponible en: https://www.sciencedirect.com/science/article/pii/B9780081003718000051
23. Knockaert G, Lemmens L, Van Buggenhout S, Hendrickx M, Van Loey A. Changes in β-carotene bioaccessibility and concentration during processing of carrot puree. Food Chemistry. 1 de julio de 2012;133(1):60-7.
24. Mbondo NN, Owino WO, Ambuko J, Sila DN. Effect of drying methods on the retention of bioactive compounds in African eggplant. Food Sci Nutr. 13 de marzo de 2018;6(4):814-23.
25. Chang CH, Lin HY, Chang CY, Liu YC. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering. 1 de diciembre de 2006;77(3):478-85.
26. Veda S, Platel K, Srinivasan K. Enhanced bioaccessibility of β-carotene from yellow-orange vegetables and green leafy vegetables by domestic heat processing. International Journal of Food Science & Technology. 2010;45(10):2201-7.
27. Schmiedeskamp A, Schreiner M, Baldermann S. Impact of Cultivar Selection and Thermal Processing by Air Drying, Air Frying, and Deep Frying on the Carotenoid Content and Stability and Antioxidant Capacity in Carrots (Daucus carota L.). J Agric Food Chem. 9 de febrero de 2022;70(5):1629-39.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Nutrición Clínica y Dietética Hospitalaria

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)