Impact of dietary ice cream with yacon (Smallanthus sonchifolius) on hyperglycemia and acceptability.
DOI:
https://doi.org/10.12873/422garciaKeywords:
Smallanthus sonchifolius, hypoglycemic effect, diet ice cream.Abstract
Introduction: Ice cream has a high sugar content in its composition, making it an interesting product to study alternatives for its substitution. Yacon (Smallanthus sonchifolius) is known as an abundant source of fructooligosaccharides (FOS), inulin and phenolic compounds, which have important nutritional benefits and health effects.
Aim: To evaluate the hypoglycemic effect, biological parameters and sensory profile of ice cream formulated with sugar substitution (AZ) by yacon syrup (JY) (Smallanthus sonchifolius)
Materials & methods: Four formulations were developed: T0 (100% AZ), T3 (100% JY), T2 (50:50; AZ:JY) and T3 (25:75, AZ:JY). Glucose levels, biological evaluation parameters and a sensory profile were analyzed.).
Results and discussions: Significant differences (p<0,05) were found in glucose levels, with T3 showing the greatest variation (decreased by 18,3 ml/dL). Its proximal composition had a moisture content of 72,50 ± 0,32%, crude protein 4,00 ± 0,26%, crude fat 2,40 ± 0,07%, ash 1,46 ± 0,09%, and carbohydrates 19,60 ± 0,27%. Likewise, all ice creams showed high biological value (BV: 98), apparent digestibility (AD: 98%) and net protein retention (NPR: 3.25). Finally, the sensory profile was similar in all the treatments evaluated.
Conclusions:
T3 (100% JY) showed significant results in hypoglycemic effect, biological parameters and sensory profile.
References
Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. Consensus Statement By the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm - 2017 Executive Summary. Endocr Pract. 2017;23(2):207–38.
Silva M de FG da, Dionísio AP, Abreu FAP de, Brito ES de, Wurlitzer NJ, Silva LMA e., et al. Evaluation of nutritional and chemical composition of yacon syrup using 1H NMR and UPLC-ESI-Q-TOF-MSE. Food Chem [Internet]. 2018;245:1239–47. Available from: https://doi.org/10.1016/j.foodchem.2017.11.092
Campos D, Betalleluz-Pallardel I, Chirinos R, Aguilar-Galvez A, Noratto G, Pedreschi R. Prebiotic effects of yacon (Smallanthus sonchifolius Poepp. & Endl), a source of fructooligosaccharides and phenolic compounds with antioxidant activity. Food Chem [Internet]. 2012;135(3):1592–9. Available from: http://dx.doi.org/10.1016/j.foodchem.2012.05.088
Corvitto A. The Secrets of Ice Cream: Ice Cream without Secrets. Second edi. Vilbo; Sant Cugat Del Valles,, Spain; 2011.
Granato D, Putnik P, Kovačević DB, Santos JS, Calado V, Rocha RS, et al. Trends in Chemometrics: Food Authentication, Microbiology, and Effects of Processing. Compr Rev Food Sci Food Saf. 2018;17(3):663–77.
Ayar A, Siçramaz H, Öztürk S, Öztürk Yilmaz S. Probiotic properties of ice creams produced with dietary fibres from by-products of the food industry. Int J Dairy Technol. 2018;71(1):174–82.
Kalicka D, Znamirowska A, Pawlos M, Buniowska M, Szajnar K. Physical and sensory characteristics and probiotic survival in ice cream sweetened with various polyols. Int J Dairy Technol. 2019;72(3):456–65.
Balthazar CF, Pimentel TC, Ferrão LL, Almada CN, Santillo A, Albenzio M, et al. Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Compr Rev Food Sci Food Saf. 2017;16(2):247–62.
Gremski LA, Coelho ALK, Santos JS, Daguer H, Molognoni L, do Prado-Silva L, et al. Antioxidants-rich ice cream containing herbal extracts and fructooligossaccharides: manufacture, functional and sensory properties. Food Chem [Internet]. 2019;298:125098. Available from: https://doi.org/10.1016/j.foodchem.2019.125098
Fiol C, Prado D, Romero C, Laburu N, Mora M, Iñaki Alava J. Introduction of a new family of ice creams. Int J Gastron Food Sci [Internet]. 2017;7:5–10. Available from: http://dx.doi.org/10.1016/j.ijgfs.2016.12.001
AOAC. Oficcial Methods of Analysis of the Association of Official Analysis Chemist. Gaithersburg, USA; 2005.
García-Ramón F, Alvarez H, Sotelo-Méndez A, Huaman-Gonzáles T, Norabuena E, Sarapura-Zarate E, et al. Calidad nutricional , evaluación física , sensorial y biológica en panes convencionales y libres de gluten Nutritional quality and evaluation physic , sensory and biological of conventional and gluten-free breads. 2022;42(1):106–14.
Serra-Barcellona C, Coll Aráoz M V., Cabrera WM, Habib NC, Honoré SM, Catalán CAN, et al. Smallanthus macroscyphus: A new source of antidiabetic compounds. Chem Biol Interact [Internet]. 2014;209(1):35–47. Available from: http://dx.doi.org/10.1016/j.cbi.2013.11.015
Dos Santos KC, Bueno BG, Pereira LF, Francisqueti FV, Braz MG, Bincoleto LF, et al. Yacon (Smallanthus sonchifolius) Leaf Extract Attenuates Hyperglycemia and Skeletal Muscle Oxidative Stress and Inflammation in Diabetic Rats. Evidence-based Complement Altern Med. 2017;2017.
Baroni S, da Rocha BA, Oliveira de Melo J, Comar JF, Caparroz-Assef SM, Bersani-Amado CA. Hydroethanolic extract of Smallanthus sonchifolius leaves improves hyperglycemia of streptozotocin induced neonatal diabetic rats. Asian Pac J Trop Med [Internet]. 2016;9(5):432–6. Available from: http://dx.doi.org/10.1016/j.apjtm.2016.03.033
Wan CW, Wong CNY, Pin WK, Wong MHY, Kwok CY, Chan RYK, et al. Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet. Phyther Res. 2013;27(4):545–51.
Ferraz APCR, Garcia JL, Costa MR, De Almeida CCV, Gregolin CS, Alves PHR, et al. Yacon (Smallanthus sonchifolius) use as an antioxidant in diabetes. Pathol Oxidative Stress Diet Antioxidants. 2020;379–86.
Roberfroid MB, Delzenne N. Dietary fructans. Annu Rev Nutr. 1998;18(1):117–43.
Fukui H, Xu X, Miwa H. Role of gut microbiota-gut hormone axis in the pathophysiology of functional gastrointestinal disorders. J Neurogastroenterol Motil. 2018;24(3):367–86.
Reina LD, Pérez-Díaz IM, Breidt F, Azcarate-Peril MA, Medina E, Butz N. Characterization of the microbial diversity in yacon spontaneous fermentation at 20°C. Int J Food Microbiol [Internet]. 2015;203:35–40. Available from: http://dx.doi.org/10.1016/j.ijfoodmicro.2015.03.007
Acevedo D, Martínez JD, Gomes EL. Determination of the nutritional quality of coastal whey and coastal goat cheese using Wistar rats (Rattus norvegicus). Inf Tecnol. 2018;29(2):215–24.
Han SW, Chee KM, Cho SJ. Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chem [Internet]. 2015;172(September):766–9. Available from: http://dx.doi.org/10.1016/j.foodchem.2014.09.127
Cuj M, Dardón de Richardson J, Mazariegos M, Pérez-Corrales W, Fischer E. Determinación de la ganancia de peso, claidad proteica y digestibilidad de ocho dietas a base de dos leguminosas, maní (Arachis hypogaea L. ) y ajonjolí (Sesamum indicum L. ) en ratas Wistar. Rev Científica la Fac Ciencias Químicas y Farm. 2017;27(1):21–31.
Torres FR, Esmerino EA, Carr BT, Ferrão LL, Granato D, Pimentel TC, et al. Rapid consumer-based sensory characterization of requeijão cremoso, a spreadable processed cheese: Performance of new statistical approaches to evaluate check-all-that-apply data. J Dairy Sci [Internet]. 2017;100(8):6100–10. Available from: http://dx.doi.org/10.3168/jds.2016-12516
Oliveira EW, Esmerino EA, Carr BT, Pinto LPF, Silva HLA, Pimentel TC, et al. Reformulating Minas Frescal cheese using consumers’ perceptions: Insights from intensity scales and check-all-that-apply questionnaires. J Dairy Sci [Internet]. 2017;100(8):6111–24. Available from: http://dx.doi.org/10.3168/jds.2016-12335
Samakradhamrongthai RS, Jannu T, Supawan T, Khawsud A, Aumpa P, Renaldi G. Inulin application on the optimization of reduced-fat ice cream using response surface methodology. Food Hydrocoll [Internet]. 2021;119(January):106873. Available from: https://doi.org/10.1016/j.foodhyd.2021.106873
Arcia PL, Costell E, Tárrega A. Inulin blend as prebiotic and fat replacer in dairy desserts: Optimization by response surface methodology. J Dairy Sci [Internet]. 2011;94(5):2192–200. Available from: http://dx.doi.org/10.3168/jds.2010-3873
Chen W, Liang G, Li X, He Z, Zeng M, Gao D, et al. Effects of soy proteins and hydrolysates on fat globule coalescence and meltdown properties of ice cream. Food Hydrocoll [Internet]. 2019;94:279–86. Available from: https://doi.org/10.1016/j.foodhyd.2019.02.045
Velásquez-Cock J, Serpa A, Vélez L, Gañán P, Gómez Hoyos C, Castro C, et al. Influence of cellulose nanofibrils on the structural elements of ice cream. Food Hydrocoll [Internet]. 2019;87:204–13. Available from: https://doi.org/10.1016/j.foodhyd.2018.07.035
Downloads
Published
How to Cite
License
Copyright (c) 2022 Nutrición Clínica y Dietética Hospitalaria
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)