Using hydroxypropyl methylcellulose as a fat substitute in making of healthy sweet while keeping sensory value
DOI:
https://doi.org/10.12873/454al-tarawnehPalabras clave:
Food grade cellulose derivative, Fat reducing, Healthy formula confectionery, Sensory stabilityResumen
Introduction:
Sweet foods are among the greatest broadly consumed food products in the Middle East and the world. Traditional Middle Eastern sweets such as Maamoul and Barazek are consumed in great amounts during social festivals. However, these sweets hold a high percentage of fat, reaching around 35%, which offers them necessary sensory properties for consumers.
Objective:
In this research, hydroxypropyl methylcellulose (HPMC) was used as a fat substitute in sweet products such as Barazek and Maamoul, due to their low fat content, without affecting the desirable sensory possessions of consumers.
Methods:
The study prepared Maamoul and Barazek by replacing ghee with hydroxypropyl methylcellulose at ratios of 10–30%, and evaluated their chemical properties in three replicates using AOAC (2011), with statistical data analysis via ANOVA, Duncan’s and t-tests in SPSS (2025).
Results:
The research shows that substituting fat at levels of 10%–30% with HPMC result in a significant decrease in fat and energy density, while keeping protein content and a non-significant development in starches. Sensory analysis similarly show that substituting fat with these HPMC percentages conserved the overall acceptability and taste of Maamoul, while Barazek show a more positive response when substituting higher HPMC percentages.
Conclusions:
This research recommends that HPMC could be used as an appropriate fat substitute in the production of healthy old-style sweets while preserving sensory quality.
Referencias
1. Alsaffar, A. A. (2016). Sustainable diets: The interaction between food industry, nutrition, health and the environment. Food science and technology international, 22(2), 102-111. DOI: https://doi.org/10.1177/1082013215572029
2. Al-Tarawneh, N.H and Al-Najjar K. (2025). Enhancing the potential of probiotic bacteria to improve labneh's nutritional value. Vol: 58 Issue. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology. https://doi.org/10.5281/zenodo.14630684
3. Bárcenas, M.-E., & Rosell, C. M. (2005). Hydroxypropylmethylcellulose acts as a bread improver and antistaling agent by delaying staling and improving texture. Food Hydrocolloids, 19(6), 1037–1043. https://doi.org/10.1016/j.foodhyd.2005.01.005 DOI: https://doi.org/10.1016/j.foodhyd.2005.01.005
4. Chysirichote, T., Utaipatanacheep, A., &Varanyanond, W. (2011). Effect of reducing fat and using fat replacers in the crust of flaky Chinese pastry. Kasetsart Journal (Natural Science), 45, 120-127.
5. Dizlek, H., & Ozer, M. S. (2016). The impacts of various ratios of different hydrocolloids and surfactants on quality characteristics of corn starch based gluten-free bread. Cereal Research Communications, 44(2), 298-308. DOI: https://doi.org/10.1556/0806.43.2015.049
6. Dodić, J., Pejin, D., Dodić, S., Popov, S., Mastilović, J., Popov‐Raljić, J., & Zivanovic, S. (2007). Effects of hydrophilic hydrocolloids on dough and bread performance of samples made from frozen doughs. Journal of food science, 72(4), S235-S241. DOI: https://doi.org/10.1111/j.1750-3841.2007.00337.x
7. Eduardo, M., Svanberg, U., & Ahrné, L. (2014). Effect of hydrocolloids and emulsifiers on baking quality of composite cassava‐maize‐wheat breads. International journal of food science, 2014(1), 479630. DOI: https://doi.org/10.1155/2014/479630
8. Gao, Y., Zhao, Y., Yao, Y., Chen, S., Xu, L., Wu, N., & Tu, Y. (2024). Recent trends in design of healthier fat replacers: Type, replacement mechanism, sensory evaluation method and consumer acceptance. Food Chemistry, 447, 138982. DOI: https://doi.org/10.1016/j.foodchem.2024.138982
9. Guarda, A., Benedito, C., Galotto, M. J., & Rosell, C. M. (2004). Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocolloids, 18(4), 601–613. https://doi.org/10.1016/j.foodhyd.2004.02.006 DOI: https://doi.org/10.1016/S0268-005X(03)00080-8
10. Guiné, R. P. F. (2022). Textural properties of bakery products: A review of instrumental and sensory evaluation studies. Applied Sciences, 12(17), 8628. https://doi.org/10.3390/app12178628 DOI: https://doi.org/10.3390/app12178628
11. Kew, B., Holmes, M., Stieger, M., & Sarkar, A. (2020). Review on fat replacement using protein-based microparticulated powders or microgels: A textural perspective. Trends in food science & technology, 106, 457-468. DOI: https://doi.org/10.1016/j.tifs.2020.10.032
12. KimaCell. (2025). Mechanism of action of HPMC in baked goods. Retrieved from Kima Chemical Co., LTD.
13. Ko, J. A., Kim, H. S., Baek, H. H., & Park, H. J. (2015). Effects of hydroxypropyl methylcellulose and temperature of dough water on the rice noodle quality. Food Science and Technology Research, 21(1), 129-135. DOI: https://doi.org/10.3136/fstr.21.129
14. Laguna, L., Primo-Martín, C., Varela, P., Salvador, A., & Sanz, T. (2014). HPMC and inulin as fat replacers in biscuits: Sensory and instrumental evaluation. LWT-Food science and technology, 56(2), 494-501. DOI: https://doi.org/10.1016/j.lwt.2013.12.025
15. Li, H., Zhang, L., Jia, Y., Yuan, Y., Li, H., Cui, W., & Yu, J. (2022). Application of whey protein emulsion gel microparticles as fat replacers in low-fat yogurt: Applicability of vegetable oil as the oil phase. Journal of dairy science, 105(12), 9404-9416. DOI: https://doi.org/10.3168/jds.2022-22314
16. Maghsoud, M., Heshmati, A., Taheri, M., Emamifar, A., & Esfarjani, F. (2024). The influence of carboxymethyl cellulose and hydroxypropyl methylcellulose on physicochemical, texture, and sensory characteristics of gluten‐free pancake. Food Science & Nutrition, 12(2), 1304-1317. DOI: https://doi.org/10.1002/fsn3.3844
17. Mishenin, Y., Koblianska, I., Yarova, I., Kovalova, O., & Bashlai, S. (2023). Food security, human health, and economy: a holistic approach to sustainable regulation. Agricultural and Resource Economics: International Scientific E-Journal, 9(4), 50-78. DOI: https://doi.org/10.51599/are.2023.09.04.03
18. Nammakuna, N., Barringer, S. A., & Ratanatriwong, P. (2016). The effects of protein isolates and hydrocolloids complexes on dough rheology, physicochemical properties and qualities of gluten‐free crackers. Food Science & Nutrition, 4(2), 143-155. DOI: https://doi.org/10.1002/fsn3.266
19. Nikolić, I., Šoronja-Simović, D., Zahorec, J., Dokić, L., Lončarević, I., Stožinić, M., & Petrović, J. (2024). Polysaccharide-based fat replacers in the functional food products. Processes, 12(12), 2701. https://doi.org/10.3390/pr12122701 DOI: https://doi.org/10.3390/pr12122701
20. Obeidat, H., Al-Ismail, K., & Saleh, M. (2018). Effects of maltodextrin as fat replacer on the chemical and sensory properties of Barazeq, Ghuribeh, and Ma’amul. International Journal of Applied and Natural Sciences (IJANS), 7(6), 97-104.
21. Rosell, C. M., Rojas, J. A., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough and bread quality. Food Hydrocolloids, 15(1), 75–81. https://doi.org/10.1016/S0268-005X(00)00054-0 DOI: https://doi.org/10.1016/S0268-005X(00)00054-0
22. Silva, R. C., Ferdaus, M. J., Foguel, A., & Da Silva, T. L. (2023). Oleogels as a Fat Substitute in Food: A Current Review. Gels, 9(3), 180. https://doi.org/10.3390/gels9030180 DOI: https://doi.org/10.3390/gels9030180
23. Syan, V., Kaur, J., Sharma, K. et al. (2024). An overview on the types, applications and health implications of fat replacers. J Food Sci Technol 61, 27–38 (2024). https://doi.org/10.1007/s13197-022-05642-7 DOI: https://doi.org/10.1007/s13197-022-05642-7
24. Talens, C., Alvarez-Sabatel, S., Sanmartín, E., Garcia-Fontanals, L., & Talens, P. (2024). Comprehensive Sensory Evaluation in Low-Fat Emulsions: A Systematic Review of Diverse Food Applications. Food Science & Nutrition, 13(1), e4700. https://doi.org/10.1002/fsn3.4700 DOI: https://doi.org/10.1002/fsn3.4700
25. Ferdaus, M. J., Barman, B., Mahmud, N., & Da Silva, R. C. (2024). Oleogels as a Promising Alternative to Animal Fat in Saturated Fat-Reduced Meat Products: A Review. Gels, 10(2), 92. https://doi.org/10.3390/gels10020092 DOI: https://doi.org/10.3390/gels10020092
26. Wang, Q., Bobadilla, S., Espert, M., Sanz, T., & Salvador, A. (2024). Shortening replacement by hydroxypropyl methylcellulose-based oleogels obtained by different indirect approaches. Texture and sensory properties of baked puff pastry. Food Hydrocolloids, 153, 109936. https://doi.org/10.1016/j.foodhyd.2024.109936 DOI: https://doi.org/10.1016/j.foodhyd.2024.109936
27. Alvarez, M. D., Cofrades, S., Espert, M., Salvador, A., & Sanz, T. (2021). Thermorheological Characterization of Healthier Reduced-Fat Cocoa Butter Formulated by Substitution with a Hydroxypropyl Methylcellulose (HPMC)-Based Oleogel. Foods, 10(4), 793. https://doi.org/10.3390/foods10040793 DOI: https://doi.org/10.3390/foods10040793
28. Sun, C., Fang, Y. (2021). Replacement of Fat or Starch. In: Fang, Y., Zhang, H., Nishinari, K. (eds) Food Hydrocolloids. Springer, Singapore. https://doi.org/10.1007/978-981-16-0320-4_12 DOI: https://doi.org/10.1007/978-981-16-0320-4_12
29. Sabbaghi, H. (2023). Perspective Chapter: Cellulose in Food Production – Principles and Innovations. IntechOpen. https://doi.org/10.5772/intechopen.109204 DOI: https://doi.org/10.5772/intechopen.109204
30. Nath, P. C., Debnath, S., Sridhar, K., Inbaraj, B. S., Nayak, P. K., & Sharma, M. (2022). A Comprehensive Review of Food Hydrogels: Principles, Formation Mechanisms, Microstructure, and Its Applications. Gels, 9(1), 1. https://doi.org/10.3390/gels9010001 DOI: https://doi.org/10.3390/gels9010001
31. Zhao, F., Li, Y., Li, C., Ban, X., Cheng, L., Hong, Y., Gu, Z., & Li, Z. (2021). Co-supported hydrocolloids improve the structure and texture quality of gluten-free bread. LWT, 152, 112248. https://doi.org/10.1016/j.lwt.2021.112248 DOI: https://doi.org/10.1016/j.lwt.2021.112248
Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2025 Nutrición Clínica y Dietética Hospitalaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)
