Prediction of fat percentage by anthropometry in children and adolescents in Chile: proposal of percentiles for its evaluation
DOI:
https://doi.org/10.12873/424urraKeywords:
Prediction equations, % fat, percentiles, schoolchildrenAbstract
Introduction: Fat percentage is determinant in primary care evaluation.
Objective: To compare regional anthropometric equations that predict body fat percentage (%BF) with foreign equations and to propose percentiles to assess %BF in children and adolescents in the Maule region, Chile.
Methodology: A cross-sectional (correlational) study was carried out in schoolchildren from the Maule region (Chile). We studied 1,126 schoolchildren (588 males and 538 females) with an age range from 6.0 to 17.9 years. Age, weight, height, abdomen circumference, and two skinfolds (tricipital and subscapular) were evaluated. Body mass index (BMI), Ponderal Index (PI), Height-Waist Index (WHI), %GC were calculated by two regional equations and three foreign equations (Boileau, Slaughter and Deuremberg).
Results: The Chilean regional equations presented values of 26.2±7.1% WC in males, while in females they reflected 33.6±4.7% WC (p<0.05). The foreign equations reflected similar values in males, i.e., 19.3%±6.9%GC (Boileau), 20.1±8.7%GC (Slaughter) and 20.6±5.3%GC (Deuremberg), whereas, in females it was 25.9±6.1%GC (Boileau), 25.2±8.8%GC (Slaughter) and 25.0±5.3%GC (Deuremberg). There were significant differences between regional equations with foreign equations in both sexes (p<0.05). The calculated percentiles were: (P3, P5, P10, P15, P25, P50, P75, P85, P90, P95 and P97). The %GC values in women at advanced ages (close to adulthood) ranged from 32 to 34%, and in men from 19 to 20%.
Conclusion: It was shown that the three foreign equations of Boileau, Slaughter and Deuremberg are not applicable to a sample of Chilean schoolchildren. In addition, percentiles were developed using anthropometric equations to estimate %BF from 6 to 17.9 years of age.
References
Taylor R, Jones I, Williams S, Goulding A. Body fat percentages measured by dual-energy X-ray absorptiometry corresponding to recently recommended body mass index cutoffs for overweight and obesity in children and adolescents aged 3–18 y. The American journal of clinical nutrition 2002; 76(6):1416-21. doi.org/10.1093/ajcn/76.6.1416
Hussain Z, Jafar T, uz Zaman M, Parveen R, Saeed F. Correlations of skin fold thickness and validation of prediction equations using DEXA as the gold standard for estimation of body fat composition in Pakistani children. BMJ open 2014;4(4). dx.doi.org/10.1136/bmjopen-2013-004194
González-Ruíz K, Medrano M, Correa-Bautista JE, García-Hermoso A, Prieto-Benavides DH, Tordecilla-Sanders A, Agostinis-Sobrinho C, Correa-Rodríguez M, Schmidt Rio-Valle J, González-Jiménez E, Ramírez-Vélez R. Comparison of bioelectrical impedance analysis, slaughter skinfold-thickness equations, and dual-energy X-ray absorptiometry for estimating body fat percentage in Colombian children and adolescents with excess of adiposity. Nutrients. 2018; 10(8): 1086. doi: 10.3390/nu10081086.
Boileau A, Lohman T, Slaugther M. Exercise and body composition in children and youth. Scan. J. Sports Sci 1985;7:17-27. 48
Slaughter M, Lohman T, Boileau R, Horswill C, Stillman R, Van Loan M, Bemben D. Skinfold equations for estimation of body fatness in children and youth. Human biology 1988:709-23.
Deurenberg P, Weststrate J, Seidell J. Body mass index as a measure of body fatness: age-and sex-specific prediction formulas. British journal of nutrition 1991;65(2):105-114. doi:10.1079/BJN19910073
Gatica-Mandiola P, Vargas-Vitoria R, Jirón Amaro O, Herrera Blanco M, Duarte Farfán C, Gómez-Campos R, Martínez Salazar C, Vargas Valdes DI, Luna Seguel DP, Cossio-Bolaños M. Cambios en la adiposidad corporal de adolescentes escolares (1997-2007). Nutrición Clínica y Dietética Hospitalaria 2013;33(3):23-9. doi: 10.12873/333bodyfat
Cossio-Bolaños M, Vilchez-Avaca C, Contreras-Mellado V, Andruske CL, Gómez-Campos R. Changes in abdominal obesity in Chilean university students stratified by body mass index. BMC Public Health 2015;16(1):1-6. doi:10.1186/s12889-015-2587-3
Brannsether B, Roelants M, Bjerknes R, Juliusson PB. References and cutoffs for triceps and subscapular skinfolds in Norwegian children 4–16 years of age. European journal of clinical nutrition 2013;67(9):928-33. https://doi.org/10.1038/ejcn.2013.91
Cossio‐Bolaños M, De Arruda M, Andruske CL, Luarte‐Rocha C, Gómez‐Campos R. Secular trends of physical growth and abdominal adiposity of school children and adolescents living at a moderate altitude in Peru. American journal of physical anthropology 2017;162(2):385-92. doi.org/10.1002/ajpa.23121.
Sedlak P, Pařízková J, Procházková L, Cvrčková L, Dvořáková H. Secular changes of adiposity in czech children aged from 3 to 6 years: latent obesity in preschool age. BioMed research international 2017. doi.org/10.1155/2017/2478461
Gomula A, Nowak-Szczepanska N, Suder A, Ignasiak Z, Koziel S. Secular trends in adiposity within the context of changes in BMI across developmental periods among Polish schoolchildren—application of the Slaughter equation. European Journal of Clinical Nutrition 2021;75(1):49-56. doi.org/10.1038/s41430-020-0675-7
Cornier M, Després J, Davis N, Grossniklaus D, Klein S, Lamarche B, Lopez-Jimenez F, Rao G, St-Onge M, Towfighi A, Poirier P. American Heart Association Obesity Committee of the Council on Nutrition; Physical Activity and Metabolism; Council on Arteriosclerosis; Thrombosis and Vascular Biology; Council on Cardiovascular Disease in the Young; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing, Council on Epidemiology and Prevention; Council on the Kidney in Cardiovascular Disease, and Stroke Council. Assessing adiposity: a scientific statement from the American Heart Association. Circulation 2011;124(18):1996-2019. doi: 10.1161/CIR.0b013e318233bc6a.
Urra-Albornoz C, Cossio-Bolaños M, Urzua-Alul L, Marquez de Moraes A, Lazari E, Cossio Bolaños W, Castelli Correia de Campos L, Luarte Rocha C, Gómez-Campos R. Desarrollo de ecuaciones antropométricas para predecir el porcentaje de grasa corporal total en niños y adolescentes chilenos. Nutr Hospitalar 2021. En prensa.
Ross W, Marfell-Jones M. Kinanthropometry. In: MacDougall JD, Wenger HA, Geeny HJ. (Eds.), Physiological testing of eliteathlete. London: Human Kinetics 1991; 223:308–314.
Costa-Urrutia P, Vizuet-Gámez A, Ramirez-Alcántara M, Guillen-González MÁ, Medina-Contreras O, Valdes-Moreno M, Musalem-Younes C, Solares-Tlapechco J, Granados J, Franco-Trecu V, Rodriguez-Arellano ME. Obesity measured as percent body fat, relationship with body mass index, and percentile curves for Mexican pediatric population. PloS one 2019;14(2):e0212792.. https://doi.org/10.1371/journal.pone.0212792.
Cole T, Bellizzi M, Flegal K, Dietz W. Establishing a standard definition for child overweight and obesity worldwide: international survey. Bmj 2000;320(7244):1240. doi.org/10.1136/bmj.320.7244.1240
Pan H, Cole T. LMS Chartmaker. (2006). Available online at: http://www. healthforallchildren.co.uk (accessed March 28, 2015).
Thibault R, Genton L, Pichard C. Body composition: why, when and for who?. Clinical nutrition 2012;31(4):435-47. doi.org/10.1016/j.clnu.2011.12.011
Ogden C, Li Y, Freedman D, Borrud L, Flegal K. Smoothed percentage body fat percentiles for U.S. children and adolescents, 1999-2004. Natl Health Stat Report 2011;(43):1-7. PMID: 22164513.
Deurenberg P, Deurenberg-Yap M. Validity of body composition methods across ethnic population groups. Acta diabetologica 2003;40(1):246-9. doi.org/10.1007/s00592-003-0077-z
Heyward VH, Wagner DR. Applied body composition assessment. Human Kinetics 2004.
Yendo S. Hidrodensitometría y pletismografía de desplazamiento de aire. Composición Corporal. Mexico, DF: McGraw-Hill. 2007:17-34.
Santos L, Santos I, Matijasevich A, Barros A. Changes in overall and regional body fatness from childhood to early adolescence. Scientific reports 2019;9(1):1-7. doi.org/10.1038/s41598-019-38486-x
Ripka W, Orsso C, Haqq A, Prado C, Ulbricht L, Leite N. Validity and accuracy of body fat prediction equations using anthropometrics measurements in adolescents. Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity 2020;19:1-8. doi.org/10.1007/s40519-020-00918-3
Moreno L, Joyanes M, Mesana M, González-Gross M, Gil C, Sarría A, Gutierrez A, Garaulet M, Perez-Prieto R, Bueno M, Marcos A. Harmonization of anthropometric measurements for a multicenter nutrition survey in Spanish adolescents. Nutrition 2003;19(6):481-6. doi.org/10.1016/S0899-9007(03)00040-6.
Sen B, Bose K, Shaikh S, Mahalanabis D. Prediction equations for body-fat percentage in Indian infants and young children using skinfold thickness and mid-arm circumference. Journal of health, population, and nutrition 2010; 28(3): 221–229. https://doi.org/10.3329/jhpn.v28i3.5548
McCarthy H, Cole T, Fry T, Jebb S, Prentice A. Body fat reference curves for children. Int J Obes 2006;30: 598–602. dx.doi.org/10.1136/jech.2009.102319
Mueller W, Harrist R, Doyle S, Labarthe D. Percentiles of body composition from bioelectrical impedance and body measurements in US adolescents 8–17 years old: Project HeartBeat!. American Journal of Human Biology: The Official Journal of the Human Biology Associatio 2004;16(2):135-50. doi.org/10.1002/ajhb.20002
Going S, Lohman T, Cussler E, Williams D, Morrison J, Horn P. Percent body fat and chronic disease risk factors in US children and youth. American journal of preventive medicine. 2011;41(4):77-86. doi.org/10.1016/j.amepre.2011.07.006
Cortés-Castell E, Juste M, Palazón-Bru A, Monge L, Sánchez-Ferrer F, Rizo-Baeza MM. A simple equation to estimate body fat percentage in children with overweightness or obesity: a retrospective study. PeerJ 2017;5:3238. doi: 10.7717/peerj.3238.
Gregg E, Cheng Y, Cadwell B, Imperatore G, Williams D, Flegal K, Narayan K, Williamson D. Secular trends in cardiovascular disease risk factors according to body mass index in US adults. Jama 2005;293(15):1868-74. doi:10.1001/jama.293.15.1868
Gade W, Schmit J, Collins M, Gade J. Beyond obesity: the diagnosis and pathophysiology of metabolic syndrome. American Society for Clinical Laboratory Science 2010;23(1):51-61. doi.org/10.29074/ascls.23.1.51
Kuczmarski R. 2000 CDC Growth Charts for the United States: methods and development. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; 2002.
Wang L, Hui S. Diagnostic accuracy of different body weight and height-based definitions of childhood obesity in identifying overfat among Chinese children and adolescents: a cross-sectional study. BMC public health 2015;15(1):1-7. doi.org/10.1186/s12889-015-2152-0
Downloads
Published
How to Cite
License
Copyright (c) 2022 Nutrición Clínica y Dietética Hospitalaria
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)