Impact of pre-sarcopenia and sarcopenia on biological and functional outcomes in individuals with chronic obstructive pulmonary disease: a cross-sectional study.
DOI:
https://doi.org/10.12873/441sepulvedaPalabras clave:
Chronic obstructive pulmonary disease, Sarcopenia, functionality, inflammation, Oxidative StressResumen
Introduction: The impact of pre-sarcopenia, sarcopenia on important clinical and biological outcomes in individuals with Chronic obstructive pulmonary disease (COPD) have not been fully investigated. Objective: To analyze the impact of pre-sarcopenia and sarcopenia on balance, muscle mass, peripheral and respiratory muscle strength and inflammatory and oxidative stress biomarkers in individuals with COPD. Methods: sixty-one patients diagnosed with COPD were included, stratified into three groups: without sarcopenia (n = 33; 69 ± 6 years), with pre-sarcopenia (n = 15; 66 ± 6 years) and with sarcopenia (n = 13; 71 ± 7 years), according to the European Working Group on Sarcopenia in Older People. It was assessed respiratory muscle strength, through maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP), handgrip strength (HGS) and body composition analysis with bioimpedance. Inflammatory and oxidative stress biomarkers were analysed from peripheral blood. Results: The prevalence of pre-sarcopenia and sarcopenia in individuals with COPD was 36% and 25%, respectively. Individuals with sarcopenia exhibit inferior muscle mass, peripheral muscle strength, respiratory muscle strength, and balance compared to their counterparts (p<0.05 for all). In addition, individuals with sarcopenia presented lower levels of protein oxidation (p=0.015) and higher levels of interleukin-1ɓ (p=0.035) compared to those without sarcopenia. Individuals with pre-sarcopenia presented lower levels of antioxidant activity (p=0.045) and higher levels of C-reactive protein (p=0.035). Conclusion: Individuals with COPD who have sarcopenia exhibit diminished muscle mass, impaired balance, and reduced peripheral and respiratory muscle strength in comparison to those with pre-sarcopenia or without sarcopenia. In addition, the presence of sarcopenia and pre-sarcopenia is probably linked by biological mechanisms related to systemic inflammation and oxidative stress.
Citas
Vestbo J, Hurd SS, Agustí AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347-365. doi:10.1164/rccm.201204-0596PP
Costa TM da RL, Costa FM, Moreira CA, et al. Sarcopenia in COPD: relationship with COPD severity and prognosis. J Bras Pneumol. 2015;41(5):415-421. doi:10.1590/S1806-37132015000000040
Riviati N, Setiati S, Laksmi PW, Abdullah M. Factors Related with Handgrip Strength in Elderly Patients. Acta Med Indones. 2017;
(3):215-219. http://www.ncbi.nlm.nih.gov/pubmed/29093231
Mathews AM. The Functional and Psychosocial Consequences of COPD. Respir Care. 2023;68(7):914-926. doi:10.4187/resp care.10542
Horner A, Olschewski H, Hartl S, et al. Physical Activity, Depression and Quality of Life in COPD – Results from the CLARA
II Study. Int J Chron Obstruct Pulmon Dis. 2023;Volume 18:2755-
doi:10.2147/COPD.S435278
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018;(1):1-16. doi:10.1093/ageing/afy169
Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyère O. Health outcomes of sarcopenia: A systematic review and meta-analysis. PLoS One. 2017;12(1):1-16. doi:10.1371/journal.pone.0169548
Yuan S, Larsson SC. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism. 2023;144:155533. doi:10.1016/j.metabol.2023.155533
Costa TM da RL, Costa FM, Moreira CA, Rabelo LM, Boguszewski CL, Borba VZC. Sarcopenia in COPD: relationship with COPD severity and prognosis TT - Sarcopenia na DPOC: relação com a gravidade e o prognóstico da DPOC. J Bras Pneumol. 2015;41(5):415-421. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-
Byun MK, Cho EN, Chang J, Ahn CM, Kim HJ. Sarcopenia correlates with systemic inflammation in COPD. Int J Chron Obstruct Pulmon Dis. 2017;Volume 12:669-675. doi:10.2147/COPD.S130790
Sepúlveda-Loyola W, de Castro LA, Matsumoto AK, et al. NOVEL antioxidant and oxidant biomarkers related to sarcopenia in COPD. Hear Lung. 2020;000:1-8. doi:10.1016/j.hrtlng.2020.06.001
Jones SE, Maddocks M, Kon SSC, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70(3):213-218. doi:10.1136/thoraxjnl-
-206440
de Blasio FFFF, Di Gregorio A, de Blasio FFFF, et al. Malnutrition and sarcopenia assessment in patients with chronic obstructive pulmonary disease according to international diagnostic criteria, and evaluation of raw BIA variables. Respir Med. 2018;134(July
:1-5. doi:10.1016/j.rmed.2017.11.006
Sergi G, Coin A, Marin S, et al. Body composition and resting energy expenditure in elderly male patients with chronic obstructive pulmonary disease. Respir Med. 2006;100(11):1918-1924.
doi:10.1016/j.rmed.2006.03.008
Lee DW, Choi EY. Sarcopenia as an independent risk factor for decreased BMD in COPD patients: Korean national health and nutrition examination surveys IV and V (2008 2011). Respirology. 2016;21:183. doi:10.1111/resp.12939_15
Lee DW, Jin HJ, Shin KC, Chung JH, Lee HW, Lee KH. Presence of sarcopenia in asthma-COPD overlap syndrome may be a risk factor for decreased bone-mineral density, unlike asthma: Korean National Health and Nutrition Examination Survey (KNHANES) IV and V (2008-2011). Int J Chron Obstruct Pulmon Dis. 2017; 12:2355-2362. doi:10.2147/COPD.S138497
Sepúlveda-Loyola W, Osadnik C, Phu S, Morita AA, Duque G, Probst VS. Diagnosis, prevalence, and clinical impact of sarcopenia in COPD: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2020;11(5):1164-1176.
Álvarez-Bustos A, Rodríguez-Sánchez B, Carnicero-Carreño JA, Sepúlveda-Loyola W, Garcia-Garcia FJ, Rodríguez-Mañas L. Healthcare cost expenditures associated to frailty and sarcopenia. BMC Geriatr. 2022;22(1). doi:10.1186/s12877-022-03439-z
Zanker J, Sim M, Anderson K, et al. Consensus guidelines for sarcopenia prevention, diagnosis and management in Australia and
New Zealand. J Cachexia Sarcopenia Muscle. 2023;14(1):142-
doi:10.1002/jcsm.13115
Gologanu D, Ionita D, Gartonea T, Stanescu C, Bogdan MA. Body composition in patients with chronic obstructive pulmonary disease. Maedica (Buchar). 2014;9(1):25-32.
Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319-338. doi:10.1183/090 31936.05.00034805
Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C. Single Prediction Equation for Bioelectrical Impedance Analysis in Adults Aged 20 – 94 Years. Nutrition. 2001;3:248-253.
Leo F. Black, Hyatt RE. Maximal Respiratory pressures: normal values and relationship to age an sex. Am Rev Respir Dis. 1969; 99:696-702.
British Geriatric Society. Fit for Frailty Fit for Frailty. Published online 2014:1-22.
Repetto M, Reides C, Gomez Carretero ML, Costa M, Griemberg G, Llesuy S. Oxidative stress in blood of HIV infected patients.
Clin Chim Acta. 1996;255(2):107-117. doi:10.1016/0009-8981 (96)06394-2
Rebecca J. Richter, BS, Gail P. Jarvik, MD, PhD, and Clement E. Furlong P. Determination of Paraoxonase 1 Status Without the Use of Toxic Organophosphate Substrates. Circ Cardiovasc Genet. 2008;1(2):147-152. doi:10.1161/CIRCGENETICS.108.811638. Determination
Marklund S, Marklund G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur J Biochem. 1974;474:469-474.
Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-126.
Witko-sarsat V, Friedlander M, Capeillere-blandin C, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney int. 1996;49:1304-1313. doi:10.1038/ki.1996.186
Navarro-Gonzálvez JA, García-Benayas C, Arenas Joaquin. Semiautomated Measurement of Nitrate in Biological. Clin Chem. 1998;0022(3):679-681.
Travassos A, Rodrigues A, Furlanetto KC, et al. Fat-free mass depletion in patients with COPD in Brazil : development of a new cutoff point and its relation with mortality and extrapulmonary manifestations. Eur J Clin Nutr. 2017;(April):1-6. doi:10.1038/ ejcn.2017.105
Munhoz T, Costa L, Costa FM, Moreira CA, Zeghbi V, Borba C. Sarcopenia prevalence in COPD patients-comparison among four different criteria. 2017;5:489-493.
Choi YJ, Park HJ, Cho JH, Byun MK. Low Skeletal Muscle Mass and Clinical Outcomes in Chronic Obstructive Pulmonary Disease.
Tuberc Respir Dis (Seoul). 2023;86(4):272-283. doi:10.4046/ trd.2023.0008
Liu X, Li P, Wang Z, et al. Evaluation of isokinetic muscle strength of upper limb and the relationship with pulmonary function and respiratory muscle strength in stable COPD patients. Int J Chron
Obstruct Pulmon Dis. 2019;Volume 14:2027-2036. doi:10.2147/ COPD.S214737
Queiroz CF, Lemos ACM, Bastos M de LS, et al. Inflammatory and immunological profiles in patients with COPD: relationship with FEV 1 reversibility. J Bras Pneumol. 2016;42(4):241-247.
doi:10.1590/s1806-37562015000000122
Byun, Min Kwang, Eun Na Cho, Joon Chang, Chul Min Ahn HJK. Sarcopenia correlates with systemic inflammation in COPD. Int J Chron Obs Pulmon Dis. 2017;12:669-675.
Sepulveda-Loyola W, de Castro LA, Matsumoto AK, et al. NOVEL antioxidant and oxidant biomarkers related to sarcopenia in COPD. Hear LUNG. 2021;50(1):184-191. doi:10.1016/ j.hrtlng.2020.06.001
Chen M, Wang Y, Deng S, Lian Z, Yu K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and antiinflammatory therapy. Front Cell Dev Biol. 2022;10. doi:10.3389/ fcell.2022.964130
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi:10.1093/ageing/afy169
Araújo de Castro L, Morita AA, Sepúlveda-Loyola W, et al. Are there differences in muscular activation to maintain balance between individuals with chronic obstructive pulmonary disease and controls? Respir Med. 2020;173:106016. doi:10.1016/ j.rmed.2020.106016
Jones SE, Maddocks M, Kon SSC, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70(3):213-218. doi:10.1136/thoraxjnl2014-206440
O’Hoski S, Harrison SL, Butler S, Goldstein R, Brooks D. Clinicianled balance training in pulmonary rehabilitation. Physiother Canada. 2021;73(3):235-243. doi:10.3138/ptc-2019-0111
Nolan CM, Rochester CL. Exercise Training Modalities for People with Chronic Obstructive Pulmonary Disease. COPD J Chronic Obstr Pulm Dis. 2019;16(5-6):378-389. doi:10.1080/15412555. 2019.1637834
Descargas
Publicado
Cómo citar
Licencia
Derechos de autor 2024 Nutrición Clínica y Dietética Hospitalaria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)