Early screening for overweight and obesity in Maros Regency: body fat percentage, visceral fat, cell age, and BMR with BMI in adult women.
DOI:
https://doi.org/10.12873/452rahmawatiPalabras clave:
body composition, weight status, metabolic heatlh, adiposityResumen
Introduction: Women are more likely to be overweight and obese, which can affect reproductive health and pregnancy. Many are unaware of this condition, often because of busy lifestyles that limit exercise, rest, and healthy eating.
Objectives: This study aimed to explore the relationship between body fat percentage, visceral fat, cell age, and basal metabolic rate (BMR) with body mass index (BMI) as an initial screening tool for overweight and obesity.
Methods: This study used a cross-sectional design and a sampling technique with consecutive sampling. The study was conducted on adult women with an age range 19-27 years which is the period between early adulthood and productive age. The subject measurement location was centred on the Yapenas 21 Maros Nursing Academy, Adatongeng, Turikale District, Maros Regency. South Sulawesi, Indonesia. The total final sample obtained was 105 subjects.
Results: The data collected in this study consisted of anthropometric and body composition measurements. Body Mass Index (BMI) was manually calculated using the standard formula, whereas body composition parameters including body fat percentage, visceral fat, cellular age, and basal metabolic rate (BMR were obtained using a bioelectrical impedance analysis (BIA) device. The BIA method estimates these values based on the body’s electrical conductivity in combination with demographic factors such as age, sex, height, and weight. Spearman Rho correlation tests showed significant correlations (p<0.05), with strong positive correlations for body fat (r=0.724), visceral fat (r=0.941), cell age (r=0.949), and BMR (r=0.898) with BMI.
Conclusion: Higher values of body fat percentage, visceral fat, cell age, and BMR corresponded to a higher BMI. Therefore, BMI is thus a relevant predictor of metabolic health. Positive lifestyle changes such as regular exercise and a healthy diet can prevent metabolic-related diseases.
Referencias
1. Poobalan A, Aucott L. Obesity Among Young Adults in Developing Countries: A Systematic Overview. Curr Obes Rep. 2016;5(1):2–
13. https://doi.org/10.1007/s13679-016-0187-x
2. Almoraie NM, Saqaan R, Alharthi R, Alamoudi A, Badh L, Shatwan IM. Snacking patterns throughout the life span: potential implications on health. Nutr Res. 2021;91:81–94. https://doi.org/ 10.1016/j.nutres.2021.05.001
3. Jéssika Maria Silva VDLM, Silva VM dos S, Martins IC de V, Augusto De Andrade ES, Borba MJ de O. Clinical and nutritional aspects in high-risk pregnant women interned in a reference center in Recife, Pernambuco. Nutr Clínica Dietética Hosp. 2022; 42(3):122–30. https://doi.org/10.12873/423maria
4. Marielle Priscila De Paula Silva Lalucci, Déborah Cristina De Souza Marques, Isabella Caroline Santos, Jéssica Zirondi Caitano, Bruno Ferrari Silva, Pablo Valdés-Badilla, et al. Interrelationship among body mass index, body composition, and biochemical profiles of overweight adolescents in south of Brazil: A cross-sectional study. Nutr Clínica Dietética Hosp. 2023;43(1):31–8. https://doi.org/ 10.12873/431silva
5. [WHO] World Health Organization. Obesity and overweight. WHO [Internet]. 2021; Available from: https://www.who.int/newsroom/fact-sheets/detail/obesity-and-overweight
6. [UNICEF] United Nations Children’s Fund. Analisis Lanskap Kelebihan Berat Badan dan Obesitas di Indonesia. UNICEF [Internet]. 2022; Available from: https://www.unicef.org/indone sia/id/gizi/laporan/analisis-lanskap-kelebihan-berat-badan-danobesitas-di-indonesia
7. [Balitbangkes] Badan Penelitian dan Pengembangan Kesehatan. Laporan Nasional Riskesdas 2018. Jakarta: Kemenkes RI
[Internet]. 2019. https://repository.badankebijakan.kemkes.go.id /id/eprint/3514/
8. [Balitbangkes] Badan Penelitian dan Pengembangan Kesehatan. Laporan Hasil Riset Kesehatan Dasar 2013. Jakarta: Kemenkes RI [Internet]. 2013; Available from: https://repository.badankebi jakan.kemkes.go.id/id/eprint/4428/
9. [DSF] Decentralization Support Facility. Indonesia’s Interg ov ernmental Transfer: Response on Future Demographic and
Urbanization Shift. Jakarta: The Minister of Finance, Republic of Indonesia [Internet]. 2011; Available from: https://docu ments1.worldbank.org/curated/en/548511468260133592/pdf/ 684550ESW0P11900Urbanization0shifts.pdf
10. Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol. 2021;12:585887. https://doi.org/ 10.3389/fendo.2021.585887
11. Sumadewi KT. Korelasi Antara Kadar Leptin dengan IMT, Lingkar Pinggang dan RLPP pada Orang Dewasa Obesitas Usia 19-25 Tahun di Universitas Warmadewa. WMJ Warmadewa Med J. 2017;1(2):71. https://doi.org/10.22225/wmj.1.2.30.71-82
12. Gadekar T, Dudeja P, Basu I, Vashisht S, Mukherji S. Correlation of visceral body fat with waist–hip ratio, waist circumference and body mass index in healthy adults: A cross sectional study. Med J Armed Forces India. 2017;76(1):41–6. https://doi.org/10.1016/ j.mjafi.2017.12.001
13. Gotera W, Aristian O, Nugraha IBA, Suastika K, Budhiarta AAG, Saraswati MR, et al. Korelasi lemak viseral sebagai penanda obesitas sentral pada pemeriksaan body impendance analysis dengan serum profil lipid dan kadar gula puasa. J Penyakit Dalam Uda yana. 2024;8(1):1–6. Available from: https://www.jpdunud.org/ index.php/JPD/article/view/214
14. Agustiyawan A, Wibisono H, Azahra RM, Siregar HJ, Ghani G, Rifanty AP. Pemanfaatan Bioelectrical Impedance Analysis (BIA) untuk Pengukuran Body Fat dan Visceral Fat yang Terasosiasi pada Resiko Penyakit Jantung. Malahayati Nurs J. 2025;7(3): 1123–30. https://doi.org/10.33024/mnj.v7i3.18378
15. Susantini P. Hubungan Indeks Masa Tubuh (IMT) dengan Persen Lemak Tubuh, dan Lemak Viscelar di Kota Semarang. J Gizi. 2021;10(1):51. https://doi.org/10.26714/jg.10.1.2021.51-59
16. Munawaroh MM, Wijayanti W, Fatimah OZS. Komposisi Lemak Viseral, Basal Metabolic Rate (BMR), Dan Usia Sel Terhadap Indeks Masa Tubuh (IMT) Pada Remaja. J Untuk Masy Sehat JUKMAS. 2021;5(1):110–9. https://doi.org/10.52643/jukmas.v5i1.1120
17. Nishida C. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The
Lancet. 2004;363(9403):157–63. https://doi.org/10.1016/S0140-6736(03)15268-3
18. Molz P, Da Silva TG, Schlickmann DDS, Steffens JP, Colombelli RAW, Franke SIR. Influence of different categories of supplements on the body composition of resistance-training practitioners. Nutrition. 2023;105:111816. https://doi.org/10.1016/j.nut.
2022.111816
19. Mifflin M, St Jeor S, Hill L, Scott B, Daugherty S, Koh Y. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241–7. https://doi.org/10.1093/ ajcn/51.2.241
20. Dancey CP, Reidy J. Statistics without maths for psychology. Seventh Edition. Harlow, England London New York Boston San Fancisco Toronto Sydney Dubai Singapore Hong Kong Tokyo Seoul Taipei New Delhi Cape Town São Paulo Mexico City Madrid Amsterdam Munich Paris Milan: Pearson; 2017;609 p.
21. World Medical Association (WMA). WMA Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Partici pants. 2024; Available from: https://jamanetwork.com/ journals/jama/fullarticle/1760318
22. Villablanca PA, Alegria JR, Mookadam F, Holmes DR, Wright RS, Levine JA. Nonexercise Activity Thermogenesis in Obesity Management. Mayo Clin Proc. 2015;90(4):509–19; Available from: https://www.mayoclinicproceedings.org/article/S00256196(15)00123-8/fulltext
23. Kurniawan L, Bahrun U, Hatta M, Arif M. Body Mass, Total Body Fat Percentage, and Visceral Fat Level Predict Insulin Resistance
Better Than Waist Circumference and Body Mass Index in Healthy Young Male Adults in Indonesia. J Clin Med. 2018;7(5):96. https://doi.org/10.3390/jcm7050096
24. Mazza E, Troiano E, Ferro Y, Lisso F, Tosi M, Turco E, et al. Obesity, Dietary Patterns, and Hormonal Balance Modulation: GenderSpecific Impacts. Nutrients. 2024;16(11):1629. https://doi.org/ 10.3390/nu16111629
25. Muhdar IN, Riyadi H, Khomsan A, Jauhari M. Physical activity, percent body fat, visceral fat, ASMI, and blood pressure with obesity in indonesian older women: a cross-sectional study. Nutr Clínica Dietética Hosp. 2025;45(1):346–53. https://doi.org/
10.12873/451muhdar
26. Lin L, Qin K, Chen D, Lu C, Chen W, Guo VY. Systematic review and meta-analysis of the association between paediatric obesity and telomere length. Acta Paediatr. 2021;110(10):2695–703. https://doi.org/10.1111/apa.15971
27. Salvestrini V, Sell C, Lorenzini A. Obesity May Accelerate the Aging Process. Front Endocrinol. 2019;10:266. https://doi.org/10.3389/ fendo.2019.00266
28. Said I, Dodik Briawan, Meti Dwiriani C, Annisa Utami Seminar. Factors Associated to Body Mass Index (BMI) in adolescent in south Jakarta: Cross Sectional Study. Nutr Clínica Dietética Hosp. 2025 May 14;45(2):215–20. https://doi.org/10.12873/452briawan
29. Fonseca DC, Sala P, De Azevedo Muner Ferreira B, Reis J, Torrinhas RS, Bendavid I, et al. Body weight control and energy expenditure. Clin Nutr Exp. 2018;20:55–9. Available from: https://www.clinicalnutritionopenscience.com/article/S2352-
9393(18)30008-3/fulltext
30. Pataky MW, Young WF, Nair KS. Hormonal and Metabolic Changes of Aging and the Influence of Lifestyle Modifications. Mayo Clin Proc. 2021;96(3):788–814. Available from: https://www.mayoclin icproceedings.org/article/S0025-6196(20)30922-8/fulltext
Descargas
Publicado
Licencia
Derechos de autor 2025 Nutrición Clínica y Dietética Hospitalaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)