Assessment of mathematical models to estimate weight and height in adult patients using CRM, RMSE, Pearson and Bland Altman
DOI:
https://doi.org/10.12873/421matosKeywords:
RMSE, Bland Altman, Rabito, Chumlea, model evaluationAbstract
Introduction: The availability of anthropometric data (weight and height) of patients with little or no mobility are important for medical and nutritional treatment, to estimate these values mathematical models that reproduce with greater fidelity have been used, so it is important to evaluate the model estimation method.
Objective: To Assess the mathematical models of Rabito, Chumlea and HNHU to estimate weight and height in adult patients using the ERM, RMSE, Pearson and Bland Altman methods.
Materials and methods: Data from 31 patients between 20 and 65 years old are considered. The data were knee height (RA), arm circumference (AB), abdominal circumference (AC), calf circumference (CP), mean arm length (MB), and arm span (EB) comprised of eight Rabito models for estimate weight and height, four from Hospital Nacional Hipólito Unanue (HNHU) and four from Chumlea. The quality of the estimation was evaluated by the Pearson Correlation, Relative Mean Error (ERM), Root Mean Square Error (RMSE) and Bland Altman methods. The level of association between the methods was determined by Pearson. Calculations were developed using R 4.1.0 statistical software.
Results: The measurements by the Pearson method present a variation of 54%, the ERM method of 26.65%, by Bland Altman of 8.49% and RMSE 6.1%. The RMSE and Bland Altman methods present an association of 0.72. The Rabito 3M (RMSE=4.38) and Rabito 3F (RMSE=4.36) models reproduce the weight values with greater fidelity and for height estimation the Rabito 2M (RMSE=3.64) and Rabito 2F (RMSE = 3.82) models.
Conclusions: The RMSE and Bland Altman methods have a good association, presenting good stability in the evaluations. Rabito's mathematical models have good estimates for weight and height.
References
Cáceres Lavernia H, Neninger Vinageras E, Menéndez Alfonso Y, Barreto Penié J. Intervención nutricional en el paciente con cáncer
Nutritional intervention in cancer patient. Revista Cubana de Medicina [Internet]. 2016;55(1):59–73. Available from: http://scielo.sld.cu
Tappenden KA, Quatrara B, Parkhurst ML, Malone AM, Fanjiang G, Ziegler TR. Critical role of nutrition in improving quality of care: An
interdisciplinary call to action to address adult hospital malnutrition. JPEN J Parenter Enteral Nutr. 2013;37(4):482–97. DOI:
1177/0148607113484066
García del Moral Martin R, Morales Laborías ME, Fernández López I, Rodríguez Delgado E, Díaz Castellanos MA. Subjective estimation
of patient weight andheight in the ICU. Non-advisable measures. Med Intensiva. 2013 Jan;37(1):50–7. DOI:
1016/j.medin.2012.03.016
Ramirez López E, Negrete López NL, Tijerina Sáenz A. El peso corporal saludable: Definición y cálculo en diferentes grupos de edad.
Revista Salud Pública y Nutrición. 2012;13(4). https://www.medigraphic.com/pdfs/revsalpubnut/spn-2012/spn124f.pdf
Pérez-Flores JE, Chávez-Tostado M, Larios-del-Toro YE, García-Rentería J, Rendón-Félix J, Salazar-Parra M, et al. Evaluación del
estado nutricional al ingreso hospitalario y su asociación con la morbilidad y mortalidad en pacientes mexicanos. Nutr Hosp.
;33(4):872–8. DOI: 10.20960/nh.386
Montejo González JC, Culebras Fernández JM, García de Lorenzo y Mateos A. Recomendaciones para la valoración nutricional del
paciente crítico. Rev Méd Chile. 2006;134:1049–56. https://scielo.conicyt.cl/pdf/rmc/v134n8/art16.pdf
Veramendi-Espinoza LE, Zafra-Tanaka JH, Salazar-Saavedra O, Basilio-Flores JE, Millones-Sánchez E, Pérez-Casquino GA, et al.
Prevalencia y factores asociados a desnutrición hospitalaria en un hospital general; Perú, 2012. Nutr Hosp. 2013;28(3):1236–43. DOI:
3305/nh.2013.28.4.6390
Savino P. Desnutrición hospitalaria: grupos de soporte metabólico y nutricional Segunda parte. Rev Colomb Cir. 2012;27:146–57.
http://www.scielo.org.co/pdf/rcci/v27n2/v27n2a7.pdf
Rabito EI, Mialich MS, Martínez EZ, García RWD, Jordao AAJ, Marchini JS. Validation of predictive equations for weight and height using
a metric tape. Nut Hosp. 2008;23(6):614–8. https://pubmed.ncbi.nlm.nih.gov/19132271/
Balode A, Stolarova A, Villerusa A, Zepa D, Kalnins I, Vētra J. Estimation of body weight and stature in Latvian hospitalized seniors.
Papers on Anthropology. 2015 Oct 21;24(2):27–36. DOI: 10.12697/poa.2015.24.2.03
Chumlea WC, Shumei, Guo S, Steinba Ugh ML. Prediction of stature from knee eight for black and white adults and children with
application to mobility-impaired or handicapped persons. Journal of the American Dietetic Association. 1994;94(12):1385–91.
https://doi.org/10.1016/0002-8223(94)92540-2
Martin O, Hernández RA. Predictive equations body weight for Venezuelan adults. Antropo [Internet]. 2013;29:133–40. Available from:
www.didac.ehu.es/antropo
Ćalasan M, Abdel Aleem SHE, Zobaa AF. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic
models: A novel exact analytical solution based on Lambert W function. Energy Conversion and Management. 2020 Apr 15;210. DOI:
1016/j.enconman.2020.112716
Matos Chamorro RA. Evaluación de modelos matemáticos de GAB y BET en la descripción de isotermas de sorción de oca (Oxalis
tuberosa mol.) y algunos derivados. [Huancayo - Perú]; 1993.
Bland JM, Altman DG. Statistical methods for assessig agreement between two methods of clinical measurement. Lancet. 1986;307–10.
https://www-users.york.ac.uk/~mb55/meas/ba.pdf
Osuna-Padilla IA, Borja-Magno AI, Leal-Escobar G, Verdugo-Hernández S. Validación de ecuaciones de estimación de peso y talla con
circunferencias corporales en adultos mayores Mexicanos. Nutr Hosp. 2015;32(6):2898–902. DOI: 10.3305/nh.2015.32.6.9760
Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet.
;346:1085–7. doi=10.1.1.383.8972
Bland M, Altman D. Measuring agreement in method comparison studies. Statistical Methods in Medical Research. 1999;8(1):135–60.
DOI: 10.1177/096228029900800204
Mantilla Hernández JC, Cárdenas Durán N, Jácome Bohórquez JM. Estimation of Height from Measurements of the Tibia in Colombian
Population. Int J Morphol. 2009;27(2):305–9. https://scielo.conicyt.cl/pdf/ijmorphol/v27n2/art04.pdf
Santana Probén S. El problema de la comparación de métodos. El caso de los errores proporcionales e iguales. Rev Cubana Aliment Nutr . 2013;23(1):179–92. http://www.revalnutricion.sld.cu/index.php/rcan/article/view/264/255
Cardemil F. Comparison analysis and applications of the Bland-Altman method: correlation or agreement? Medwave. 2017 Jan
;17(01):1–6. DOI: 10.5867/medwave.2016.01.6852
Rativa D, Fernandes BJT, Roque A. Height and Weight Estimation from Anthropometric Measurements Using Machine Learning
Regressions. IEEE Journal of Translational Engineering in Health and Medicine. 2018 Mar 28;6. DOI: 10.1109/JTEHM.2018.2797983
Myles PS, Cui J. Using the Bland-Altman method to measure agreement with repeated measures. Vol. 99, British Journal of Anaesthesia.
Oxford University Press; 2007. p. 309–11. DOI: 10.1093/bja/aem214
Möller S, Debrabant B, Halekoh U, Petersen AK, Gerke O. An extension of the bland–altman plot for analyzing the agreement of more
than two raters. Diagnostics. 2021 Jan 1;11(54):1–12. DOI: 10.3390/diagnostics11010054
Doğan NÖ. Bland-Altman analysis: A paradigm to understand correlation and agreement. Turkish Journal of Emergency Medicine. 2018
Dec 1;18(4):139–41. DOI: 10.1016/j.tjem.2018.09.001
Ferreira Melo AP, Kuerten de Salles R, Kunradi Vieira FG, Gonçalves Ferreira M. Methods for estimating body weight and height in
hospitalized adults: a comparative analysis. Rev Bras Cineantropom Desempenho Hum. 2014;16(4):475–84. DOI: 10.5007/1980-
2014v16n4p475
Rabito EI, Vannucchi GB, Marques V, Suen M, Lopes L, Neto C, et al. Weight and height prediction of immobilized patients. Rev Nutr.
;19(6):655–61. https://doi.org/10.1590/S1415-52732006000600002
Souza R, Schimitt De Fraga J, Bertaso C, Gottschall A, Michielin Busnello F, Rabito EI, et al. Anthropometry assessment in the elderly:
estimates of weight and height and agreement between BMI ratings. Rev Bras Geriatr Gerentol. 2013;16(1):81–90. DOI:10.1590/S1809-
Cereda E, Bertoli S, Battezzati A. Height prediction formula for middle-aged (30-55 y) Caucasians. Nutrition. 2010 Nov;26(11–12):1075–
DOI: 10.1016/j.nut.2009.08.024
Bernal-Orozco MF, Vizmanos B, Hunot C, Flores-Castro M, Leal-Mora D, Cells A, et al. Equation to estimate body weight in elderly
Mexican women using anthropometric measurements. Nutr Hosp. 2010;25(4):648–55. DOI: 10.3305/nh.2010.25.4.4508
Borba De Amorim R, Coelho MA, Cruz S, Borges De Souza-Júnior PR, Corrêa Da Mota J, González C. Stimating stature measurements
applied on body mass index in the nutritional assessment of the elderly. Rev Chil Nutr. 2008;35(1):272–9.
Downloads
Published
How to Cite
License
Copyright (c) 2022 Nutrición Clínica y Dietética Hospitalaria
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)