The effect of food processing on the allergenic potential of common vegetables

Autores/as

DOI:

https://doi.org/10.12873/

Palabras clave:

protein structure, thermolabile profilins, pathogen-related proteins, cross-reactivity, sensitisation, fermentation.

Resumen

Objectives: The aim of this study was to determine the impact of various food processing methods on the allergenic potential of common vegetables and to develop recommendations for reducing the risk of allergic reactions.

Methods:The research methodology was grounded in the molecular allergology concept and included a systematic review of scientific literature, comparative evaluation of processing technologies, and critical analysis of clinical data.

Results: The results showed that thermal processing (boiling, baking) led to the denaturation of allergenic proteins, particularly thermolabile profilins, but did not ensure the complete destruction of thermostable pathogen-related proteins. It was found that fermentation in acidic environments promoted the breakdown of proteins into shorter peptides with reduced immunogenicity, while non-thermal methods (ultrasound, high pressure, cold plasma) altered protein configurations without heating. The study revealed a phenomenon of cross-reactivity, whereby structural similarities between proteins of different vegetables triggered simultaneous allergic responses to related plant species. The most effective approach proved to be the combination of technologies (boiling with fermentation, pH alteration with heating), which enabled multilevel degradation of antigenic epitopes. A correlation was established between the individual sensitisation profile of a patient, the state of gastric secretion (with increased pH levels from the physiological range of 1-2), and the effectiveness of the processing methods.

Conclusion: The findings demonstrated the need for a personalised approach to selecting vegetable processing methods for individuals with food allergies and highlighted the importance of multidisciplinary collaboration between allergologists, gastroenterologists, and food technologists. The study’s outcomes allowed for the development of practical recommendations on selecting optimal processing methods for vegetables in allergic individuals, contributing to dietary expansion and improved quality of life.

Referencias

1. López-Pedrouso M, Lorenzo JM, Gagaoua M, Franco D. Current trends in proteomic advances for food allergen analysis. Biology. 2020;9(9):247. doi:10.3390/biology9090247

2. Dong X, Wang J, Raghavan V. Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Crit Rev Food Sci Nutr. 2020;61(2):196-210. doi:10.1080/10408398.2020.1722942

3. Gonzalez PM, Cassin AM, Durban R, Upton JEM. Effects of food processing on allergenicity. Curr Allergy Asthma Rep. 2025;25:9. doi:10.1007/s11882-024-01191-5

4. Aninowski M, Kazimierczak R, Hallmann E, Rachtan-Janicka J, Fijoł-Adach E, Feledyn-Szewczyk B, Majak I, Leszczyńska J. Evaluation of the potential allergenicity of strawberries in response to different farming practices. Metabolites. 2020;10(3):102. doi:10.3390/metabo10030102

5. Liu Q, Lin S, Sun N. How does food matrix components affect food allergies, food allergens and the detection of food allergens? A systematic review. Trends Food Sci Technol. 2022;127:289-290. doi:10.1016/j.tifs.2022.07.009

6. Włodarczyk K, Smolińska B, Majak I. Tomato allergy: The characterization of the selected allergens and antioxidants of tomato (Solanum lycopersicum) – A review. Antioxidants. 2022;11(4):644. doi:10.3390/antiox11040644

7. El Mecherfi K, Todorov S, Albuquerque Cavalcanti de Albuquerque M, Denery-Papini S. Allergenicity of Fermented Foods: Emphasis on Seeds Protein-Based Products. Foods. 2020;9(6):792. doi:10.3390/foods9060792

8. Albuquerque TG, Bragotto APA, Costa HS. Processed food: Nutrition, safety, and public health. Int J Environ Res Public Health. 2022;19(24):16410. doi:10.3390/ijerph192416410

9. EFSA GMO Panel, Mullins E, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, et al. Scientific Opinion on development needs for the allergenicity and protein safety assessment of food and feed products derived from biotechnology. EFSA J. 2022;20(1). doi:10.2903/j.efsa.2022.7044

10. Food Allergy Research & Education. Food allergy facts and statistics for the U.S. 2024. Available from: https://www.foodallergy.org/sites/default/files/2024-07/FARE%20Food%20Allergy%20Facts%20and%20Statistics_April2024.pdf

11. Cleveland Clinic. Oral Allergy Syndrome (OAS): Symptoms & Treatment. 2022. Available from: https://my.clevelandclinic.org/health/diseases/23996-oral-allergy-syndrome

12. AllergyInsider. Celery allergen fact sheet. 2022. Available from: https://www.thermofisher.com/allergy/us/en/allergen-fact-sheets/celery.html

13. Ballmer-Weber BK, Vieths S, Lüttkopf D, Heuschmann P, Wüthrich B. Celery allergy confirmed by double-blind, placebo-controlled food challenge: a clinical study in 32 subjects with a history of adverse reactions to celery root. J Allergy Clin Immunol. 2000;106(2):373-378. doi:10.1067/mai.2000.107196

14. Sharma Y, Patil P. Biological and chemical factors influencing food allergies: A comprehensive review. J Sci Res Rep. 2024;30(6):787-794. doi:10.9734/jsrr/2024/v30i62095

15. Lee MW, Lee HJ, Moon S, Shin KH. Usefulness of Component-Resolved Diagnosis of Pollen-Food Allergy Syndrome. Ann Lab Med. 2024;44(4):378-380. doi:10.3343/alm.2023.0466

16. Li SK, Liu Z, Huang CK, Wu TC, Huang CF. Prevalence, clinical presentation, and associated atopic diseases of pediatric fruit and vegetable allergy: A population-based study. Pediatr Neonatol. 2022;63(5):520-526. doi:10.1016/j.pedneo.2022.02.006

17. Carlson G, Coop C. Pollen food allergy syndrome (PFAS): A review of current available literature. Ann Allergy Asthma Immunol. 2019;123(4):359-365. doi:10.1016/j.anai.2019.07.022

18. Kato Y, Morikawa T, Fujieda S. Comprehensive review of pollen-food allergy syndrome: Pathogenesis, epidemiology, and treatment approaches. Allergol Int. 2025;74(1):42-50. doi:10.1016/j.alit.2024.08.007

19. Pali-Schöll I, Untersmayr E, Klems M, Jensen-Jarolim E. The effect of digestion and digestibility on allergenicity of food. Nutrients. 2018;10(9):1129. doi:10.3390/nu10091129

20. Dong G, Hinds LM, Soro AB, Hu Z, Sun DW, Tiwari BK. Non-thermal processing technologies for allergen control in alternative protein sources for food industry applications. Food Eng Rev. 2024;16:595-617. doi:10.1007/s12393-024-09378-2

21. Pi X, Yang Y, Sun Y, Cui Q. Recent advances in alleviating food allergenicity through fermentation. Crit Rev Food Sci Nutr. 2021;62(1):1-14. doi:10.1080/10408398.2021.1913093

22. Clemen R, Arlt K, von Woedtke T, Bekeschus S. Gas plasma protein oxidation increases immunogenicity and human antigen-presenting cell maturation and activation. Vaccines. 2022;10(11):1814. doi:10.3390/vaccines10111814

23. Cuadrado C, Sanchiz A, Linacero R. Nut allergenicity: Effect of food processing. Allergies. 2021;1(3):150-162. doi:10.3390/allergies1030014

24. Verma AK, Kumar S, Das M, Dwivedi PD. Impact of thermal processing on legume allergens. Plant Foods Hum Nutr. 2012;67(4):430-441. doi:10.1007/s11130-012-0328-7

25. Braspaiboon S, Laokuldilok T. High hydrostatic pressure: Influences on allergenicity, bioactivities, and structural and functional properties of proteins from diverse food sources. Foods. 2024;13(6):922. doi:10.3390/foods13060922

26. Vanga SK, Jain M, Raghavan V. Significance of fruit and vegetable allergens: Possibilities of its reduction through processing. Food Rev Int. 2018;34(2):103-125. doi:10.1080/87559129.2016.1239208

27. Fabbri ADT, Crosby GA. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Int J Gastronomy Food Sci. 2016;3:2-11. doi:10.1016/j.ijgfs.2015.11.001

28. Jacob T, Vogel L, Reuter A, Wangorsch A, Kring C, Mahler V, Wöhrl BM. Food processing does not abolish the allergenicity of the carrot allergen Dau c 1: Influence of pH, temperature, and the food matrix. Mol Nutr Food Res. 2020;64(18). doi:10.1002/mnfr.202000334

29. Tan X, Cui F, Wang D, Lv X, Li X, Li J. Fermented vegetables: Health benefits, defects, and current technological solutions. Foods. 2024;13(1):38. doi:10.3390/foods13010038

30. Lokya V, Parmar S, Pandey AK, Sudini HK, Huai D, Ozias-Akins P, et al. Prospects for developing allergen-depleted food crops. Plant Genome. 2023;16(3):e20375. doi:10.1002/tpg2.20375

31. Williams E. Assessment of food processing technologies on allergen reduction in United States. Int J Food Sci. 2024;7(2):1-10. doi:10.47604/ijf.2540

32. Sabaghi M, Maleki SJ. Mitigating food protein allergenicity with biopolymers, bioactive compounds, and enzymes. Allergies. 2024;4(4):234-253. doi:10.3390/allergies4040016

33. Siddiqui SA, Erol Z, Rugjii J, Taşçi F, Kahraman HA, Toppi V, et al. An overview of fermentation in the food industry – looking back from a new perspective. Bioresour Bioprocess. 2023;10:85. doi:10.1186/s40643-023-00702-y

34. Gunal-Köroğlu D, Karabulut G, Ozkan G, Yilmaz H, Gültekin-Subasi B, Capanoglu E. Allergenicity of alternative proteins: Reduction mechanisms and processing strategies. J Agric Food Chem. 2025;73(13):7522-7546. doi:10.1021/acs.jafc.5c00948

35. Pak E. Food processing and its effects on allergenicity of food allergens. Am J Stud Res. 2024;2(4):23-28. http://dx.doi.org/10.70251/HYJR2348.242328

36. López-Pedrouso M, Lorenzo JM, Alché JD, Moreira R, Franco D. Advanced proteomic and bioinformatic tools for predictive analysis of allergens in novel foods. Biology. 2023;12(5):714. doi:10.3390/biology12050714

Descargas

Publicado

12-12-2025

Cómo citar

[1]
2025. The effect of food processing on the allergenic potential of common vegetables. Nutrición Clínica y Dietética Hospitalaria. 45, 4 (Dec. 2025). DOI:https://doi.org/10.12873/.

Artículos similares

1-10 de 294

También puede Iniciar una búsqueda de similitud avanzada para este artículo.