Utilizing applications Nutrihas Pro for calculated fluid and electrolyte requirements for patient.

Autores/as

  • Christine Rogahang clinical nutrition
  • Nurpudji A TASLIM
  • Yasmin A SYAUKI
  • Agussalim BUKHARI
  • Aminuddin AMINUDDIN
  • Nur ASHARI

DOI:

https://doi.org/10.12873/451rogahand

Palabras clave:

hospital malnutrition, Medical Nutrition Therapy, water-electrolyte balance

Resumen

Background: Hospital malnutrition is a critical issue, particularly in regions like Makassar, Indonesia, where malnutrition rates surpass national averages. Malnourished patients often experience electrolyte imbalances and prolonged hospital stays, leading to increased healthcare costs. Despite the importance of accurate nutritional therapy, manual calculations are time-consuming and prone to human error, necessitating a more efficient solution.

Objective: This study aims to assess the effectiveness of the Nutrihas-Pro application, developed to improve the accuracy and time efficiency of nutritional therapy planning compared to manual methods.

Methods: An experimental repeated measures design was employed, involving 30 clinical nutrition residents at RSUP Dr. Wahidin Sudirohusodo. Participants manually calculated nutritional therapy and fluid/electrolyte needs for 60 patients and repeated the process using Nutrihas-Pro. Calculation times and accuracy were compared using paired-samples t-tests and chi- square tests.

Results: The Nutrihas-Pro application significantly reduced calculation times (p = 0.000) compared to manual methods, without compromising the accuracy of fluid and electrolyte requirement calculations (p > 0.05). Patients displayed a high prevalence of electrolyte imbalance (68.3%), particularly hyponatremia (35%).

Conclusion: Nutrihas-Pro improves time efficiency while maintaining calculation accuracy, making it a promising tool for nutritional therapy management. Further research is needed to address its limitations, including its reliance on internet connectivity and comparisons with other clinical calculator applications.

Citas

REFERENCES

Alim, A., Agustang, A., & Adam, A. (2021). Transformation of Consumption Behavior of the Poor in the Case of Malnutrition: Health Sociology Study With Participatory Approach in Makassar City, Indonesia. In Open Access Macedonian Journal of Medical Sciences. https://doi.org/10.3889/oamjms.2021.6417

C, P. V., S, N. S., J, C. C., P, G. V., & M, M. C. (2011). Variation in the Energy and Macronutrient Contents of Texture Modified Hospital Diets. Revista Chilena De Nutrición. https://doi.org/10.4067/s0717-75182011000400008

Coorey, G., Neubeck, L., Usherwood, T., Peiris, D., Parker, S., Lau, A., Chow, C. K., Panaretto, K. S., Harris, M. E., Zwar, N., & Redfern, J. (2017). Implementation of a Consumer-Focused eHealth Intervention for People With Moderate-to-High Cardiovascular Disease Risk: Protocol for a Mixed-Methods Process Evaluation. BMJ Open. https://doi.org/10.1136/bmjopen-2016-014353

Eftimov, T., Korošec, P., & Seljak, B. K. (2017). StandFood: Standardization of Foods Using a Semi-Automatic System for Classifying and Describing Foods According to FoodEx2. Nutrients. https://doi.org/10.3390/nu9060542

Eglseer, D., Hoedl, M., & Schoberer, D. (2020). Malnutrition Risk and Hospital‐ acquired Falls in Older Adults: A Cross‐sectional, Multicenter Study. Geriatrics and Gerontology International. https://doi.org/10.1111/ggi.13885

Fukuda, Y., Kohara, M., Hatakeyama, A., Ochi, M., & Nakai, M. (2020). Influence of Geriatric Patients’ Food Preferences on the Selection of Discharge Destination. In Journal of Clinical Medicine Research. https://doi.org/10.14740/jocmr4337

Gilbert, S. Z., Morrison, C. L., Chen, Q. J., Punian, J., Bernstein, J. T., & Jessri, M. (2023). Algorithm-Based Mapping of Products in a Branded Canadian Food and Beverage Database to Their Equivalents in Health Canada’s Canadian Nutrient File. Frontiers in Nutrition. https://doi.org/10.3389/fnut.2022.1013516

Goswami, L., Chakravarty, C., & Hazarika, B. (2013). Prevalence of Malnutrition in a Tertiary Care Hospital in India. Indian Journal of Critical Care Medicine. https://doi.org/10.4103/0972-5229.117058

Huh, K. Y., Oh, J., Lee, S., & Yu, K. (2022). Clinical Evaluation of Digital Therapeutics: Present and Future. Healthcare Informatics Research. https://doi.org/10.4258/hir.2022.28.3.188

Jiomekong, A. (2023). Learning Food Composition Knowledge From Scientific Literature. https://doi.org/10.21203/rs.3.rs-2779745/v1

Kapsokefalou, M., Roe, M., Turrini, A., Costa, H. S., Martínez-Victoria, E., Marletta, L., Berry, R., & Finglas, P. (2019). Food Composition at Present: New Challenges. Nutrients. https://doi.org/10.3390/nu11081714

Lamarine, M., Hager, J., Astrup, A., & Valsesia, A. (2018). Fast and Accurate Approaches for Large-Scale, Automated Mapping of Food Diaries on Food Composition Tables. Frontiers in Nutrition. https://doi.org/10.3389/fnut.2018.00038

Lambert, K., Potter, J., Lonergan, M., Tapsell, L. C., & Charlton, K. E. (2013). Efficacy of Nutrition as Medication in Malnourished Hospitalised Patients Is Strongly Influenced by Environmental Factors. Nutrition & Dietetics. https://doi.org/10.1111/1747-0080.12083

Milne‐Ives, M., Cock, C. de, Lim, E., Shehadeh, M. H., Pennington, N. de, Mole, G., Normando, E., & Meinert, E. (2020). The Effectiveness of Artificial Intelligence Conversational Agents in Health Care: Systematic Review. Journal of Medical Internet Research. https://doi.org/10.2196/20346

Ndahimana, D., & Kim, E.-K. (2017). Measurement Methods for Physical Activity and Energy Expenditure: a Review. Clinical Nutrition Research, 6(2), 68. https://doi.org/10.7762/cnr.2017.6.2.68

Permenkes. (2019). PNPK Tata Laksana Malnutrisi Pada Dewasa.

Pham, Q., Wiljer, D., & Cafazzo, J. A. (2016). Beyond the Randomized Controlled Trial: A Review of Alternatives in mHealth Clinical Trial Methods. Jmir Mhealth and Uhealth. https://doi.org/10.2196/mhealth.5720

Pinheiro Volp, A. C., Esteves de Oliveira, F. C., Duarte Moreira Alves, R., Esteves, E. A., & Bressan, J. (2011). Gasto energético: Componentes y métodos de evaluación. In Nutricion Hospitalaria (Vol. 26, Issue 3, pp. 430–440). https://doi.org/10.3305/nh.2011.26.3.5181

Pourhassan, M., Rommersbach, N., Lueg, G., Klimek, C., Schnatmann, M., Liermann, D., E. Janssen, G. M., & Wirth, R. (2020). The Impact of Malnutrition on Acute Muscle Wasting in Frail Older Hospitalized Patients. Nutrients. https://doi.org/10.3390/nu12051387

Simadibrata, M., Witjaksono, F., Wulandari, Y., Haloho, R. M., Pribadi, R. R., Abdullah, M., Rachman, A., Wijaya, A. E., Bisuk, B., Simadibrata, D. M., Mutiara, R., & Renaldi, K. (2021). High-Protein Dietary Supplementation and Nutritional Status Improvement of Malnourished Patients in Hospital Care. In The Indonesian Journal of Gastroenterology Hepatology and Digestive Endoscopy. https://doi.org/10.24871/2222021147-153

Singer, P., Blaser, A. R., Berger, M. M., Alhazzani, W., Calder, P. C., Casaer, M. P., Hiesmayr, M., Mayer, K., Montejo, J. C., Pichard, C., Preiser, J. C., van Zanten, A. R. H., Oczkowski, S., Szczeklik, W., & Bischoff, S. C. (2019). ESPEN guideline on clinical nutrition in the intensive care unit. Clinical Nutrition, 38(1), 48–79. https://doi.org/10.1016/j.clnu.2018.08.037

Siobal, M. S., Baltz, J. E., & Richardson, J. (2021). A Guide to the Nutritional Assessment and Treatment of the Critically Ill Patient.

Stoumpos, A. I., Kitsios, F., & Talias, M. A. (2023). Digital Transformation in Healthcare: Technology Acceptance and Its Applications. International Journal of Environmental Research and Public Health, 20(4). https://doi.org/10.3390/IJERPH20043407

Theodore Armand, T. P. (2024). Digital Anti-Aging Healthcare: An Overview of the Applications of Digital Technologies in Diet Management. Journal of Personalized Medicine. https://doi.org/10.3390/jpm14030254

Trtovac, D., & Lee, J. (2018). The Use of Technology in Identifying Hospital Malnutrition: Scoping Review. Jmir Medical Informatics. https://doi.org/10.2196/medinform.7601

Williams, P. (2009). Foodservice Perspective in Institutions. https://doi.org/10.1533/9781845695712.2.50

Wong, J. J., Tailor, B. V, Chen, F., & Florance, R. (2022). Improving Nutritional Assessment in Acute Medical Admissions at a District General Hospital. In International Journal of Risk & Safety in Medicine. https://doi.org/10.3233/jrs-227025.

Descargas

Publicado

03-02-2025

Cómo citar

Rogahang, C., TASLIM, N. A., SYAUKI, Y. A., BUKHARI, A., AMINUDDIN, A., & ASHARI, N. (2025). Utilizing applications Nutrihas Pro for calculated fluid and electrolyte requirements for patient. Nutrición Clínica Y Dietética Hospitalaria, 45(1). https://doi.org/10.12873/451rogahand

Artículos más leídos del mismo autor/a

1 2 > >>