Association between phase angle and blood biomarkers in community-dwelling older adults: The role of BDNF and oxidative stress
DOI:
https://doi.org/10.12873/Palabras clave:
Body Composition, impedancia bioeléctrica, Oxidative Stress, AgedResumen
Introduction: The association among important blood biomarkers with Phase angle (PhA) has not yet been specifically explored.
Objective: To analyze the association between PhA and blood biomarkers, including BDNF, oxidative stress, metabolism, and vitamins, in community-dwelling older adults.
Methods: A cross-sectional study with 169 older adults from Londrina, Brazil. PhA was measured using bioimpedance. Blood biomarkers from peripheral blood test were analyzed in all individuals after 10 hours of overnight fasting. Brain-derived neurotrophic factor (BDNF), Nitric Oxide (NO); Advanced Oxidation Protein Products (AOPP), Ferrous Oxidation in Xylenol orange (FOX); Glutathione Transferase (GSH); Total Plasma Antioxidant Potential (TRAP); Total Plasma Sulfhydryl (SH); Catalase (CAT); Superoxide Dismutase (SOD), Vitamin D and Vitamin B12 were analyzed. A linear regression model was performed to analyze the association between Blood biomarkers and PhA, considering Model 1 (unadjusted analysis) and Model 2 (adjusted for age and sex). Statistical significance was considered as p < 0.05
Results: The mean age of the participants was 70.17 ± 7.14 years, with 81.07% women. Significant associations were observed between PhA and BDNF (β = 3.43x10⁻⁴, p = 0.04) and FOX (β = -8.01x10⁻¹, p = 0.03) in unadjusted analyses. After adjusting for age and sex, the associations remained significant for BDNF (β = 3.51x10⁻⁴, p = 0.04) and FOX (β = -7.60x10⁻¹, p = 0.04).
Conclusions: BDNF and FOX are the main blood biomarkers related with PhA in community-dwelling older adults.
Referencias
Mundstock E, Amaral MA, Baptista RR, et al. Association between phase angle from bioelectrical impedance analysis and level of physical activity: Systematic review and meta-analysis. Clinical Nutrition. 2019;38(4):1504-1510. doi:https://doi.org/10.1016/j.clnu.2018.08.031
Lukaski HC, Talluri A. Phase angle as an index of physiological status: validating bioelectrical assessments of hydration and cell mass in health and disease. Rev Endocr Metab Disord. 2023;24(3):371-379. doi:https://doi.org/10.1007/S11154-022-09764-3/METRICS
Costa Pereira JP da, Rebouças A de S, Prado CM, et al. Phase angle as a marker of muscle quality: A systematic review and meta-analysis. Clinical Nutrition. 2024;43(12):308-326. doi:10.1016/J.CLNU.2024.11.008
Tomeleri CM, Cavaglieri CR, de Souza MF, et al. Phase angle is related with inflammatory and oxidative stress biomarkers in older women. Exp Gerontol. 2018;102:12-18. doi:10.1016/J.EXGER.2017.11.019
da Silva BR, Orsso CE, Gonzalez MC, et al. Phase angle and cellular health: inflammation and oxidative damage. Rev Endocr Metab Disord. 2023;24(3):543-562. doi:10.1007/s11154-022-09775-0
Longo GZ, Silva DAS, Gabiatti MP, Martins PC, Hansen F. Phase angle association with metabolic profile in adults: A population-based study. Nutrition. 2021;90:111233. doi:https://doi.org/10.1016/J.NUT.2021.111233
Mentella MC, Scaldaferri F, Pizzoferrato M, Gasbarrini A, Miggiano GAD. The Association of Disease Activity, BMI and Phase Angle with Vitamin D Deficiency in Patients with IBD. Nutrients. 2019;11(11):2583. doi:10.3390/nu11112583
Valisoltani N, Mohammadi H, Aliannejad R, et al. Association of phase angle with sarcopenia and muscle function in patients with COPD: a case-control study. BMC Pulm Med. 2024;24(1):1-7. doi:https://doi.org/10.1186/S12890-023-02814-9/TABLES/6
Virto N, Río X, Angulo-Garay G, et al. Development of Continuous Assessment of Muscle Quality and Frailty in Older Patients Using Multiparametric Combinations of Ultrasound and Blood Biomarkers: Protocol for the ECOFRAIL Study. JMIR Res Protoc. 2024;13(1). doi:10.2196/50325
Roh E, Hwang SY, Song E, et al. Association of plasma brain-derived neurotrophic factor levels and frailty in community-dwelling older adults. Scientific Reports 2022 12:1. 2022;12(1):1-8. doi:10.1038/s41598-022-19706-3
Hachisu M, Hashizume M, Kawai H, et al. Relationships between serum brain‐derived neurotrophic factor concentration and parameters for health scores in community‐dwelling older adults. Geriatr Gerontol Int. 2018;18(3):456-461. doi:10.1111/ggi.13210
Kim SW, Marosi K, Mattson M. Ketone beta-hydroxybutyrate up-regulates BDNF expression through NF-κB as an adaptive response against ROS, which may improve neuronal bioenergetics and enhance neuroprotection (P3.090). Neurology. 2017;88(16_supplement). doi:10.1212/WNL.88.16_SUPPLEMENT.P3.090
Jin Z, Lu Y, Wu X, et al. The cross-talk between tumor cells and activated fibroblasts mediated by lactate/BDNF/TrkB signaling promotes acquired resistance to anlotinib in human gastric cancer. Redox Biol. 2021;46:102076. doi:10.1016/J.REDOX.2021.102076
Kobayashi J, Uchida H, Kofuji A, et al. Molecular regulation of skeletal muscle mass and the contribution of nitric oxide: A review. FASEB Bioadv. 2019;1(6):364-374. doi:10.1096/FBA.2018-00080
Baldelli S, Ciccarone F, Limongi D, Checconi P, Palamara AT, Ciriolo MR. Glutathione and Nitric Oxide: Key Team Players in Use and Disuse of Skeletal Muscle. Nutrients 2019, Vol 11, Page 2318. 2019;11(10):2318. doi:https://doi.org/10.3390/NU11102318
Dzik KP, Kaczor JJ. Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. European Journal of Applied Physiology 2019 119:4. 2019;119(4):825-839. doi:https://doi.org/10.1007/S00421-019-04104-X
Latham CM, Brightwell CR, Keeble AR, et al. Vitamin D Promotes Skeletal Muscle Regeneration and Mitochondrial Health. Front Physiol. 2021;12:660498. doi:https://doi.org/10.3389/FPHYS.2021.660498/PDF
Sharma S, Bhadra R, Selvam S, Sambashivaiah S. Vitamin B12 status and skeletal muscle function among elderly: A literature review and pilot study on the effect of oral vitamin B12 supplementation in improving muscle function. Aging Medicine. 2024;7(4):480-489. doi:https://doi.org/10.1002/AGM2.12346
Filimonova T, Karakulova Y. Tropomyosin receptor kinase B-mediated signaling in integration of neuropathic pain and obesity in diabetic polyneuropathy. einstein (São Paulo). 2021;19:eAO6256. doi:https://doi.org/10.31744/EINSTEIN_JOURNAL/2021AO6256
Hachisu M, Hashizume M, Kawai H, et al. Relationships between serum brain-derived neurotrophic factor concentration and parameters for health scores in community-dwelling older adults. Geriatr Gerontol Int. 2018;18(3):456-461. doi:https://doi.org/10.1111/GGI.13210
Sepúlveda Loyola WA, Vilaça Cavallari Machado F, Araújo de Castro L, et al. Is oxidative stress associated with disease severity, pulmonary function and metabolic syndrome in chronic obstructive pulmonary disease? Rev Clin Esp. 2019;219(9):477-484. doi:10.1016/j.rce.2019.04.007
Sepúlveda-Loyola W, de Castro LA, Matsumoto AK, et al. NOVEL antioxidant and oxidant biomarkers related to sarcopenia in COPD. Heart and Lung. 2020;000:1-8. doi:10.1016/j.hrtlng.2020.06.001
Sepulveda-Loyola W, Tricanico Maciel RP, De Castro Teixeira D, et al. Circuito de ejercicio funcional con tareas duales sobre variables clínicas relacionados con la sarcopenia. Retos. 2025;63:459-471. doi:10.47197/retos.v63.110528
Di Vincenzo O, Marra M, Sacco AM, Pasanisi F, Scalfi L. Bioelectrical impedance (BIA)-derived phase angle in adults with obesity: A systematic review. Clinical Nutrition. 2021;40(9):5238-5248. doi:https://doi.org/10.1016/j.clnu.2021.07.035
Akamatsu Y, Kusakabe T, Arai H, et al. Phase angle from bioelectrical impedance analysis is a useful indicator of muscle quality. Published online 2021. doi:https://doi.org/10.1002/jcsm.12860
Martins PC, Alves Junior CAS, Silva AM, Silva DAS. Phase angle and body composition: A scoping review. Clin Nutr ESPEN. 2023;56:237-250. doi:10.1016/J.CLNESP.2023.05.015/ATTACHMENT/E3B38ECA-EAC4-4DBD-9A43-AF61C5B04EBF/MMC1.DOCX
Yamada Y, Watanabe K, Fujisawa C, et al. Relationship between cognitive function and phase angle measured with a bioelectrical impedance system. Eur Geriatr Med. 2024;15(1):201-208. doi:https://doi.org/10.1007/S41999-023-00894-8/METRICS
Rentería I, García-Suárez PC, Fry AC, et al. The Molecular Effects of BDNF Synthesis on Skeletal Muscle: A Mini-Review. Front Physiol. 2022;13:934714. doi:https://doi.org/10.3389/FPHYS.2022.934714/BIBTEX
Noble EE, Billington CJ, Kotz CM, Wang C. The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):1053-1069. doi:https://doi.org/10.1152/AJPREGU.00776.2010/ASSET/IMAGES/LARGE/ZH60051175620001.JPEG
Garlini LM, Alves FD, Ceretta LB, Perry IS, Souza GC, Clausell NO. Phase angle and mortality: a systematic review. European Journal of Clinical Nutrition 2018 73:4. 2018;73(4):495-508. doi:https://doi.org/10.1038/s41430-018-0159-1
Anik MI, Mahmud N, Masud A Al, et al. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS Appl Bio Mater. Published online 2022. doi:https://doi.org/10.1021/ACSABM.2C00411
Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021;81(18):3691-3707. doi:https://doi.org/10.1016/J.MOLCEL.2021.08.018/ASSET/55DA6D04-1835-4283-9678-087C853C0EB9/MAIN.ASSETS/GR6_LRG.JPG
Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP. Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem. 1994;220(2):403-409. doi:https://doi.org/10.1006/abio.1994.1357
Martins AD, Oliveira R, Brito JP, et al. Phase angle cutoff value as a marker of the health status and functional capacity in breast cancer survivors. Physiol Behav. 2021;235:113400. doi:https://doi.org/10.1016/J.PHYSBEH.2021.113400
Lu HH, Ege D, Salehi S, Boccaccini AR. Ionic medicine: Exploiting metallic ions to stimulate skeletal muscle tissue regeneration. Acta Biomater. 2024;190:1-23. doi:10.1016/J.ACTBIO.2024.10.033
Venturelli M, Morgan GR, Donato AJ, et al. Cellular aging of skeletal muscle: telomeric and free radical evidence that physical inactivity is responsible and not age. Clin Sci. 2014;127(6):415-421. doi:10.1042/CS20140051
Angulo J, El Assar M, Rodríguez-Mañas L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol Aspects Med. 2016;50:1-32. doi:https://doi.org/10.1016/J.MAM.2016.06.001
Mella De Cuevas KM, Sepúlveda-Loyola W, Araya-Quintanilla F, de Barros Morselli J, Molari M, Probst VS. Association between clinical measures for the diagnosis of osteosarcopenia with functionality and mortality in older adults: longitudinal study. Nutricion Clinica y Dietetica Hospitalaria. 2022;42(3):143-151. doi:10.12873/423sepulveda
Kubo A, Ishizaka M, Tsukahara S, Numaguchi S. Association between age and phase angle in “old” and “super-old” nursing home residents. J Phys Ther Sci. 2022;34(9):642-645. doi:10.1589/JPTS.34.642
Matias CN, Nunes CL, Francisco S, et al. Phase angle predicts physical function in older adults. Arch Gerontol Geriatr. 2020;90:104151. doi:10.1016/J.ARCHGER.2020.104151
Morisawa T, Saitoh M, Takahashi T, et al. Association of phase angle with hospital-acquired functional decline in older patients undergoing cardiovascular surgery. Nutrition. 2021;91-92:111402. doi:10.1016/J.NUT.2021.111402
Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2025 Nutrición Clínica y Dietética Hospitalaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)