Gut Microbiota and its Relationship with the Gut-Lung Axis: Clinical and Pathophysiological Implications
DOI:
https://doi.org/10.12873/453martinez2Keywords:
Gut microbiota; Gut-lung axis; Mucosal immunity; Respiratory diseases; Asthma; COPD; COVID-19; Dysbiosis; Probiotics; Systemic inflammation.Abstract
Introduction: The gut microbiota has emerged as a key modulator of immune responses, and its interaction with the respiratory tract via the gut-lung axis is increasingly recognized. Methods: A narrative review was conducted using literature published between 2014 and 2024 from PubMed, Scopus, and SciELO, using terms related to “microbiota,” “gut-lung axis,” “asthma,” “COPD,” and “COVID-19.” Results: Alterations in gut microbiota influence respiratory diseases such as asthma, COPD, cystic fibrosis, and COVID-19, which in turn can alter gut microbial composition. Mechanisms include migration of bacterial metabolites, systemic immune activation, and fungal dysbiosis. In addition, studies show a higher incidence of inflammatory bowel disease (IBD) in COPD patients, suggesting shared inflammatory pathways. Conclusions: Modulating gut microbiota represents a promising therapeutic strategy for improving respiratory health. Understanding the gut-lung axis may support targeted interventions in both pediatric and adult medicine.
References
1. Skalski JH, Limon JJ, Sharma P, Gargus MD, Nguyen C, Tang J, et al. Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathog. 2018 Sep;14(9):e1007260. doi:10.1371/journal.ppat.1007260. PMID:30226264; PMCID:PMC6161884. Disponible en: https://doi.org/10.1371/journal.ppat.1007260
2. He Z, Wang Z, Yin J, Wang Q. Research progress on microecology and childhood respiratory infections via the lung-gut axis. Front Pediatr. 2025 Jun 19;13:1509333. doi:10.3389/fped.2025.1509333. Disponible en: https://www.frontiersin.org/articles/10.3389/fped.2025.1509333/full
3. Pi J, Zhang G, Zeng G. Editorial: Gut–lung interaction axis. Front Microbiol. 2023 Feb 28;14:1159629. doi:10.3389/fmicb.2023.1159629. PMID:36925483; PMCID:PMC10011617. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36925483/
4. Wang L, Cai Y, Garssen J, Henricks PAJ, Folkerts G, Braber S. The bidirectional gut-lung axis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2023 May 1;207(9):1145–1160. doi:10.1164/rccm.202206-1066TR. PMID:36883945; PMCID:PMC10161745. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36883945/
5. Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LMJ. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients. 2021 Mar 9;13(3):886. doi:10.3390/nu13030886. PMID:33803407; PMCID:PMC8001875. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33803407/
6. Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015;69:71–92. doi:10.1146/annurev-micro-091014-104330. PMID:26488273; PMCID:PMC4930275. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26488273/
7. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014 Feb;20(2):159–166. doi:10.1038/nm.3444. Disponible en: https://www.nature.com/articles/nm.3444
8. Kanj AN, et al. Dysbiosis of the intestinal fungal microbiota increases lung ILC2 and asthma severity. Respir Res. 2023;24:144. https://doi.org/10.1186/s12931-023-02422-5
9.Kisiel M, et al. IBD and asthma: Results from RHINE Study. Respir Med. 2023;216:107307. https://doi.org/10.1016/j.rmed.2023.107307
10. GBD 2017 Inflammatory Bowel Disease Collaborators, Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020 Jan;5(1):17–30. doi:10.1016/S2468-1253(19)30333-4. Epub 2019 Oct 21. PMID:31648971; PMCID:PMC7026709. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31648971/
11. Venkatesan P. 2023 GINA report for asthma. Lancet Respir Med. 2023 Jul;11(7):589. doi:10.1016/S2213-2600(23)00230-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37302397/
12. Timm S, Svanes C, Janson C, Sigsgaard T, Johannessen A, Gislason T, et al. Place of upbringing in early childhood as related to inflammatory bowel diseases in adulthood: a population-based cohort study in Northern Europe. Eur J Epidemiol. 2014 Jun;29(6):429–437. doi:10.1007/s10654-014-9922-3. Epub 2014 Jun 11. PMID:24916994; PMCID:PMC4065648. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24916994/
13. Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019 Jul;12(4):843–850. doi:10.1038/s41385-019-0160-6. Epub 2019 Apr 11. PMID:30976087. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30976087/
14.Kisiel MA, Sedvall M, Malinovschi A, Franklin KA, Gislason T, Shlunssen V, et al. Inflammatory bowel disease and asthma. Results from the RHINE study. Respir Med. 2023 Sep;216:107307. doi:10.1016/j.rmed.2023.107307. PMID:37271300. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37271300/
15. Deshmukh F, Vasudevan A, Mengalie E. Association between irritable bowel syndrome and asthma: a meta-analysis and systematic review. Ann Gastroenterol. 2019 Nov-Dec;32(6):570–577. doi:10.20524/aog.2019.0426. Epub 2019 Oct 21. PMID:31700233; PMCID:PMC6826079. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826079/
16. Herling A, Perluk TM, Freund O, Maharshak N, Cohen NA. Pulmonary manifestations of IBD: case report and review of the literature. J Clin Med. 2024 Sep 12;13(18):5401. doi:10.3390/jcm13185401. PMID:39336887; PMCID:PMC11432544. Disponible en: https://pubmed.ncbi.nlm.nih.gov/39336887/
17. Suzuki A, Noro R, Omori J, Terasaki Y, Tanaka T, Fujita K, et al. Pulmonary manifestation of inflammatory bowel disease: two case reports. Respir Med Case Rep. 2023;45:101914. doi:10.1016/j.rmcr.2023.101914. PMID:37304335. Disponible en: https://www.sciencedirect.com/science/article/pii/S2213007123001090
18. Intestinal dysbiosis and inflammation in cystic fibrosis impacts gut and lung disease. Lancet Microbe. 2022 Mar;3(3):e151–e158. doi:10.1016/S2590-0978(22)00007-6. PMID:35124811. Disponible en: https://www.sciencedirect.com/science/article/pii/S2590097822000076
19. Lynch SV. The lung microbiome and airway disease. Ann Am Thorac Soc. 2016 Dec;13 Suppl 2(Suppl 5):S462–S465. doi:10.1513/AnnalsATS.201605-356AW. PMID:28005424; PMCID:PMC5291470. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28005424/
20. Tam RY, van Dorst JM, McKay I, Coffey M, Ooi CY. Intestinal inflammation and alterations in the gut microbiota in cystic fibrosis: a review of the current evidence, pathophysiology and future directions. J Clin Med. 2022;11(3):649. doi:10.3390/jcm11030649. Disponible en: https://www.mdpi.com/2077-0383/11/3/649
21. Ritchie AI, Baker JR, Parekh TM, Allinson JP, Bhatt SP, Donnelly LE, Donaldson GC. Update in chronic obstructive pulmonary disease 2020. Am J Respir Crit Care Med. 2021 Jul 1;204(1):14–22. doi:10.1164/rccm.202102-0253UP. PMID:33856972; PMCID:PMC8437128. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33856972/
22. SeyedAlinaghi S, Afzalian A, Pashaei Z, Varshochi S, Karimi A, Mojdeganlou H, et al. Gut microbiota and COVID-19: a systematic review. Health Sci Rep. 2023 Jan 27;6(2):e1080. doi:10.1002/hsr2.1080. Retraction in: Health Sci Rep.2023 Jul 25;6(7):e1460. doi:10.1002/hsr2.1460. PMID:36721396; PMCID:PMC9881458. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36721396/
23. de Oliveira GLV, Oliveira CNS, Pinzan CF, de Salis LVV, Cardoso CRB. Microbiota modulation of the gut-lung axis in COVID-19. Front Immunol. 2021 Feb 24;12:635471. doi:10.3389/fimmu.2021.635471. PMID:33717181; PMCID:PMC7945592. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33717181/
24. Castañeda Guillot C. Microbiota pulmonar y eje intestino-pulmón. Rev Cubana Pediatr. 2021;93(4):e1403. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75312021000400012
25. Martín Giménez VM, Modrego J, Gómez-Garre D, Manucha W, de Las Heras N. Gut microbiota dysbiosis in COVID-19: modulation and approaches for prevention and therapy. Int J Mol Sci. 2023 Jul 31;24(15):12249. doi:10.3390/ijms241512249. PMID:37569625; PMCID:PMC10419057. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37569625/
26. Giannos P, Prokopidis K. Gut dysbiosis and long COVID-19: feeling gutted. J Med Virol. 2022 Jul;94(7):2917–2918. doi:10.1002/jmv.27684. Epub 2022 Mar 7. PMID:35233795; PMCID:PMC9088471. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35233795/
27. Borrego Ruiz A, Borrego JJ. Influencia de la dieta vegetariana en el microbioma intestinal humano. Nutr Clín Diet Hosp. 2024 Jul 8;44(3):149–57. doi:10.12873/443borrego. Disponible en: https://revista.nutricion.org/index.php/ncdh/article/view/655 (revista.nutricion.org)
Published
Issue
Section
Categories
License
Copyright (c) 2025 Nutrición Clínica y Dietética Hospitalaria

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)