Association between polyphenol intake and arterial hypertension in seasonal agricultural workers in the Ñuble region Chile

Authors

  • Nicole Becerra-Navarrete Carrera de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad Adventista de Chile, Chillán, Chile https://orcid.org/0009-0006-1675-5143
  • Miguel Ángel López-Espinoza Carrera de Nutrición y Dietética. Facultad de Ciencias de la Salud. Universidad Adventista de Chile

DOI:

https://doi.org/10.12873/

Keywords:

Hipertensión, Polifenoles, Enfermedades de los Trabajadores Agrícolas.

Abstract

Introduction: High blood pressure is a complex disorder influenced by environmental, genetic, and etiological factors, with diagnosis based on blood pressure (PA) measurements. Recent studies support the idea that a diet rich in polyphenols (PLF) could help reduce high blood pressure (HTA).  
Objective: To evaluate the association between polyphe
nols and hypertension in seasonal agricultural workers dedicated to the reception and production of seasonal fruits located in a rural area of the Ñuble region in Chile. 
Materials and methods: Analytical observational retro
spective case-control study. A total sample of 60 seasonal agricultural workers from the company VitaFoods SpA (Coihueco, Chile) will be studied between March and April 2025. The cases will be workers with arterial hypertension (PA ≥ 140/90 mmHg in two consecutive measurements), while controls will 
have lower PA. The FFQ-P questionnaire will be used to measure the intake of total polyphenols consumed in the last six days. The mg/day of total polyphenols will be compared in both groups with the Student’s t test and a logistic regression will be obtained to obtain odds ratios, with 95% CI.  
Results: The sample (76% of male cases) showed an av
erage consumption of total PLF (mg/day) in cases and controls of 1436.73 ± 762.60 and 1681.74 ± 1163.61 mg/day (p=0.530). The PLF reported in the vegetables consumed was statistically associated (OR=0.98; 95% CI: 0.95-0.99) with the group with normal blood pressures.  
Conclusion: The study linked the intake of vegetable 
polyphenols to a lower risk of hypertension, highlighting their cardiovascular protective effect, albeit modest in magnitude. These findings support their promotion as part of a healthy diet. 

 

References

1. De Bhailis ÁM, Kalra PA. Hypertension and the kidneys. Br J Hosp Med (Lond). 2022;83(5):1-11. https://doi.org/10.12968/hmed.2021.0440

2. Kreutz R, Brunström M, Burnier M, Grassi G, Januszewicz A, Muiesan ML, et al. European Society of Hypertension clinical practice guidelines for the management of arterial hypertension. Eur J Intern Med. 2024;126:1–15. https://doi.org/10.1016/j.ejim.2024.05.033

3. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):1269-324 https://doi.org/10.1161/HYP.0000000000000066

4. Gorostidi M, Gijón-Conde T, de la Sierra A, Rodilla E, Rubio E, Vinyoles E, et al. Guía práctica sobre el diagnóstico y tratamiento de la hipertensión arterial en España, 2022. Sociedad Española de Hipertensión - Liga Española para la Lucha contra la Hipertensión Arterial (SEH-LELHA). Hipertens Riesgo Vasc [Internet]. 2022;39(4):174–94. Disponible en: https://doi.org/10.1016/j.hipert.2022.09.002Get rights and content

5. Huerta-Madroñal M, Aguilar MR, Vázquez-Lasa B. Polifenoles: propiedades y papel en desarrollos biomédicos. Asociación para el Fomento de la Ciencia y de la Técnica [Internet]. Handñe.net. 2022;775(123):1-8. Disponible en: https://hdl.handle.net/10261/308865

6. Margozzini P, Passi Á. Encuesta Nacional de Salud, ENS 2016-2017: un aporte a la planificación sanitaria y políticas públicas en Chile. ARS Medica [Internet]. 2018;43(1):30–4. Disponible en: https://www.arsmedica.cl/index.php/MED/article/view/1354

7. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398(10304):957-80. https://doi.org/10.1016/S0140-6736(22)00061-7

8. Harrison DG, Coffman TM, Wilcox CS. Pathophysiology of Hypertension: The Mosaic Theory and Beyond. Circ Res. 2021;128(7):847-63 https://doi.org/10.1161/CIRCRESAHA.121.318082

9. Han B, Song M, Li L, Sun X, Lei Y. The application of nitric oxide for ocular hypertension treatment. Molecules. 2021;26(23):7306. https://doi.org/10.3390/molecules26237306

10. Habauzit V, Morand C. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Ther Adv Chronic Dis. 2012;3(2):87-106. https://doi.org/10.1177/2040622311430006

11. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2(12):1231-46. https://doi.org/10.3390/nu2121231

12. Lin X, Zhao J, Ge S, Lu H, Xiong Q, Guo X, et al. Dietary Polyphenol Intake and Risk of Hypertension: An 18-y Nationwide Cohort Study in China. Am J Clin Nutr. 2023;118(1):264-72. https://doi.org/10.1016/j.ajcnut.2023.05.001

13. Murcia-Lesmes D, Domínguez-López I, Laveriano-Santos EP, Tresserra-Rimbau A, Castro-Barquero S, Estruch R, Vazquez-Ruiz Z, et al. Association between tomato consumption and blood pressure in an older population at high cardiovascular risk: observational analysis of PREDIMED trial. Eur J Prev Cardiol. 2024;31(8):922-34. https://doi.org/10.1093/eurjpc/zwad363

14. Taladrid D, de Celis M, Belda I, Bartolomé B, Moreno-Arribas MV. Hypertension- and glycaemia-lowering effects of a grape-pomace-derived seasoning in high-cardiovascular risk and healthy subjects. Interplay with the gut microbiome. Food Funct. 2022;13(4):2068-82. https://doi.org/10.1039/d1fo03942c

15. Tanghe A, Heyman E, Lespagnol E, Stautemas J, Celie B, Op 't Roodt J, et al. Acute Effects of Cocoa Flavanols on Blood Pressure and Peripheral Vascular Reactivity in Type 2 Diabetes Mellitus and Essential Hypertension. Nutrients. 2022;14(13):2692. https://doi.org/10.3390/nu14132692

16. Ferguson JJA, Oldmeadow C, Bentley D, Eslick S, Garg ML. Effect of a polyphenol-rich dietary supplement containing Pinus massoniana bark extract on blood pressure in healthy adults: A parallel, randomized placebo-controlled trial. Complement Ther Med. 2022;71:102896. https://doi.org/10.1016/j.ctim.2022.102896

17. Ghaemi F, Emadzadeh M, Atkin SL, Jamialahmadi T, Zengin G, Sahebkar A. Impact of pomegranate juice on blood pressure: A systematic review and meta-analysis. Phytother Res. 2023;37(10):4429-41. https://doi.org/10.1002/ptr.7952

18. Li T, Zhao Y, Yuan L, Zhang D, Feng Y, Hu H, et al. Total dietary flavonoid intake and risk of cardiometabolic diseases: A dose-response meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2024;64(9):2760-72. https://doi.org/10.1080/10408398.2022.2126427

19. Gómez Quintana JC, Alvear Vega S. Determinantes sociales de la hipertensión arterial, según CASEN 2020. Universidad de Talca (Chile). Facultad de Economía y Negocios; [Internet] Utalca.cl. Disponible en: https://dspace.utalca.cl/bitstream/1950/13020/3/2022A000850.pdf2022

20. Guía ESC/ESH 2018 sobre el diagnóstico y tratamiento de la hipertensión arterial. [Internet]. Rev Esp Cardiol. 2019;72(2):104-810. https://doi.org/10.1016/j.recesp.2018.12.005

21. Guzmán Pincheira C, Fierro Jara F. Diseño y validación de un cuestionario autorreportado de frecuencia de consumo de polifenoles aportados por la dieta. Nutr Hosp. 2023;40(6):1207-18 https://doi.org/10.20960/nh.04491

22. Arrogante O. Técnicas de muestreo y cálculo del tamaño muestral: Cómo y cuántos participantes debo seleccionar para mi investigación. Enferm Intensiva (Engl). [Internet]. 2021;33(1):44–7. Disponible en: https://dx.doi.org/10.1016/j.enfi.2021.03.004

23. Declaración de Helsinki de la AMM – Principios éticos para las investigaciones médicas con participantes humanos [Internet]. Wma.net. Disponible en: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humano

24. De tomar una D 30 MA. Monitor de Presión [Internet]. Medicaltec.cl. Disponible en: https://medicaltec.cl/product/toma-presion-de-brazo-omron-hem-7120-brazalete-pediatrico/

25. Cerda R, Barrero C, Arena M, Bascuñán K, Jiménez C. Atlas fotográfico de alimentos y preparaciones típicas chilenas. Santiago, Chile: Universidad de Chile; 2010. p. 143. Disponible en: https://www.repositoriodigital.minsal.cl/handle/2015/902?show=full

26. Instituto Nacional de Tecnología Agropecuaria. Base de datos de actividad antiox idante (ORAC) y de contenido de polifenoles totales (PFT). INTA; 2021. Disponible en: https://www.portalantioxidantes.com

27. Neveu V, Pérez-Jiménez J, Vos F, Crespy V, Du Chaffaut L, Mennen L, et al. Phe nol-Explorer: an online comprehensive database on polyphenol contents in foods. Database J Biol 2010;2010:1-9. https://doi.org/10.1093/database/bap024

28. Zhang H, Singal PK, Ravandi A, Rabinovich-Nikitin I. Sex-Specific Differences in the Pathophysiology of Hypertension. Biomolecules. 2025; 15(1):143. https://doi.org/10.3390/biom15010143

29. Parmar MP, Kaur M, Bhavanam S, Mulaka GSR, Ishfaq L, Vempati R, et al. Systematic Review of the Effects of Smoking on the Cardiovascular System and General Health. Cureus. 2023 Apr 24;15(4):38073. https://doi.org/10.7759/cureus.38073

30.Alsharif SN. High-Polyphenol Fruit and Vegetable Consumption and Cardiovascular Disease (CVD) Risk Factors Among Adults in Jeddah, Saudi Arabia. Cureus. 2024 Aug 14;16(8):e66863. https://doi.org/10.7759/cureus.66863

31.Yang, H., Tuo, X., Wang, L., Tundis, R., Portillo, M.P., et al, 2021. Bioactive procyanidins from dietary sources: the relationship between bioactivity and polymerization degree. Trends Food Sci. Technol. https://doi.org/10.1016/j.tifs.2021.02.063

32.Liu Y, Deng J, Zhao T, Yang X, Zhang J, Yang H. Bioavailability and mechanisms of dietary polyphenols affected by non-thermal processing technology in fruits and vegetables. Curr Res Food Sci. 2024 Mar 7;8:100715. https://doi.org/10.1016/j.crfs.2024.100715

33.Arfaoui L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules. 2021 May 16;26(10):2959. https://doi.org/10.3390/molecules26102959

34.Reis A, Rocha BS, Laranjinha J, de Freitas V. Dietary (poly)phenols as modulators of the biophysical properties in endothelial cell membranes: its impact on nitric oxide bioavailability in hypertension. FEBS Lett [Internet]. 2024;598(17):2190–210. http://dx.doi.org/10.1002/1873-3468.14812

35. Aatif M. Current Understanding of Polyphenols to Enhance Bioavailability for Better Therapies. Biomedicines. 2023; 11(7):2078. https://doi.org/10.3390/biomedicines11072078

Downloads

Published

2025-07-27

How to Cite

[1]
2025. Association between polyphenol intake and arterial hypertension in seasonal agricultural workers in the Ñuble region Chile. Nutrición Clínica y Dietética Hospitalaria. 45, 2 (Jul. 2025). DOI:https://doi.org/10.12873/.

Similar Articles

1-10 of 539

You may also start an advanced similarity search for this article.