Spatial description of cardiovascular risk in the elderly population: Case of Cali - Colombia.
DOI:
https://doi.org/10.12873/422picoKeywords:
Geographic mapping, cardiovascular disease, aging, spatial analysisAbstract
Currently, the population pyramid indicates that there are more and more long-lived people, which means that the increase in life expectancy exacerbates the symptoms of chronic pathologies. Likewise, cardiovascular diseases have been catalogued as a serious public health problem since they cause thousands of deaths in the world every year. For this reason, the use of spatial tools is fundamental in the identification of zones that help to prioritize disease intervention. Objective: To spatially analyze the cardiovascular risk of the elderly population of the municipality of Santiago de Cali, the third most populated city in Colombia. Methodology: A quantitative cross-sectional study was conducted with a sample of 4092 adults over 55 years of age; sociodemographic variables were analyzed with SPSS version 24.0 and GeoCODE was used to standardize the addresses; the results were subsequently analyzed with ArcMaps 10.3.1. Results: The mean age of the participants was 73.9 (SD: 9.08) years and the largest population group was between 66 and 76 years of age (40.9%). In addition, the participants were mostly female (82.6%). Low cardiovascular risk predominated with 84.1%, followed by moderate risk with 13.1% and, to a lesser extent, there were cases of high cardiovascular risk with 2.7%, the latter distributed in the western and southeastern part of the municipality. Conclusion: The entire population presented cardiovascular risk and the central and northern zones were at moderate to low cardiovascular risk.
References
Organización Mundial de la Salud. Enfermedad Cardiovascular; 2018.
Bloom D, Cafiero T, Jané-Llopis E, Abrahams-Gessel S, Bloom R, Fathima S, Feigl et al. The global economic burden of noncommunicable diseases. Foro Económico Mundial; 2011.
Laslett LJ, Alagona P, Clark BA. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol. 2011.60:1-49.
Butler D. ONU apunta a los principales asesinos. La cumbre internacional considera cómo detener el aumento de las enfermedades no transmisibles. Naturaleza. 2011. 477: 260-1.
Ministerio De Salud Y Protección Social. Observatorio Nacional de Envejecimiento y Vejez OEV, Colombia Guía Metodológica. Bogota D.C; 2015.
Alcaldía de Santiago de Cali, Secretaria de Salud Pública Municipal. Análisis de Situación Integrada de Salud (ASIS), diciembre 02, guía conceptual y metodológica con el modelo de Determinantes Sociales de la Salud; 2013.
Castellanos J, Moreno A, Bouza C, Sautto J. Valoración de riesgo cardiovascular mediante modelos de clasificación. Revista investigación operacional. 2019. 40: 1-6.
Assefa N, Oljira L, Baraki N, Demena M, Zelalem D, Ashenafi M, Dedefo M. HDSS profile: the kersa health and demographic surveillance system. Int J Epidemiol. 45: 94-101.
Dedefo M, Zelalem D, Eskinder B, Assefa N, Ashenafi W, Baraki N, Tesfatsion MD, Oljira L, Haile A. Causes of death among children aged 5 to 14 years old from 2008 to 2013 in Kersa Health and Demographic Surveillance System (Kersa HDSS). Plos One. 2016.11.
Hammer G, Some F, Muller O, Kynast-Wolf G, Kouyate B, Becher H. Pattern of cause-specific childhood mortality in a malaria endemic area of Burkina Faso Malar. 2006. 5.
Anderson, C. Lee, D. Dean, N. Identifying clusters in Bayesian disease mapping. Biostatistics. 2014. 3:457-469.
De la Torre Ugarte, M., Oyola-Garcia, A. Los determinantes sociales de la salud: una propuesta de variables y marcadores/indicadores para su medición. Revista Peruana de Epidemiología. 2014. 18:16-22.
Kulldor, M. & Nagarwalla. Spatial disease clusters: Detection and inference. Statistics in Medicine. 1995. 14:799-810.
Gangnon, R, Clayton M. Detecting and Modeling Spatial Disease Clustering: A Bayesian Approach. University of Wisconsin. 2000.
Elliot, P, Martuzzi, M, and Shaddick, G. Spatial statistical methods in environmental epidemiology: A critique. Statistical Methods in Medical Research. 1995. 4:137-159.
Bilancia M, Demarinis G. Bayesian Scanning of Spatial Disease Rates with Integrated Nested Laplace Approximation (INLA). Statistical Methods & Applications. 2014. 23: 71–94.
Leening M, Ferket B, Steyerberg E, Kavousi M, Deckers J, Nieboer D. Sex differences in lifetime risk and first manifestation of cardiovascular disease: prospective population based cohort study. BMJ. 2014. 5992-5992.
American Heart Association. Women and cardiovascular diseases: statistics. Statistical fact sheet-populations. 2013.
Mosca L, Grundy SM, Judelson D, King K, Limacher M, Oparil S. Guide to preventive cardiology in women. 1999. 99:2480-4.
Mosca L, Appel LJ, Benjamin EJ, Berra K, Chandra-Strobos N, Fabunmi RP. Evidence-based guidelines for cardiovascular disease prevention in women. 2004. 109:672-93.
Pérez Fernández Y, Soto García A. Factores de riesgo de las enfermedades cardiovasculares. [Trabajo de grado]. Universidad Complutense de Madrid. 2017.
Vélez Alvarez C, Gil Obando L, Avila Rendón C. Factores de riesgo cardiovascular y variables asociadas en personas de 20 a 79 años en Manizales, Colombia. Universidad y salud. 2015. 34:43-45.
Masson W, Siniawski D, Krauss J, Cagide A. Aplicabilidad clínica de la función de Framingham a 30 años. Utilidad en la estratificación del riesgo cardiovascular y en el diagnóstico de placa aterosclerótica carotídea . Rev Esp Cardiol. 2011. 64 4:305-11.
Barrios V, Martinez M, Tomas, JP. Clinical profile of a hypercholesterolemic Spanish population and differences between genders. LIPYCARE study. Hipertensión. 2004. 21(8):395-402.
Mendivil CO, Sierra ID, Pérez CE. Valoración del riesgo cardiovascular global y prevalencia de dislipemias según los criterios del NCEP-ATP III en una población adulta de Bogotá, Colombia. Clin Invest Arterioscl. 2004. 16(3):99-107
Gómez García S, Vega Pérez M, Tamez Rodríguez A, Guzmán Pantoja J. Fortalecimiento de la atención primaria del adulto mayor ante la transición demográfica en México. Atención Primaria. 2013. 45(5):231-232.
Downloads
Published
How to Cite
License
Copyright (c) 2022 Nutrición Clínica y Dietética Hospitalaria
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)