Relationship between cognition and certain blood biomarkers as a function of vascular risk factors.
DOI:
https://doi.org/10.12873/441sanchezKeywords:
Biomarkers, Lifestyle, Cognition, HbA1C, LipidsAbstract
Introduction. Alterations in cognitive function have been found in disorders such as obesity, type 2 diabetes mellitus (DMT-II). One possibility to understand the relationship between cognition and these disorders are biomarkers in blood. Objective. The objective was to determine the relationship of glycated hemoglobin (HbA1c) and lipids with the cognitive performance of patients who are exposed to several vascular risk factors compared to patients who have fewer risk factors. Methodology. Non-probabilistic convenience sampling was carried out. Adults of both sexes who were over 18 years of age and who had a risk factor such as a sedentary lifestyle and/or a diagnosis of DMT-II, hypertension or obesity were considered. Participants who did not have these risk factors and who led an active lifestyle were also considered. The participants (n=28) were evaluated using the Dspan, Mspan and MoCa neuropsychological tests and the levels of glycosylated hemoglobin (HbA1c), cholesterol (HDL and LDL) and triglycerides (TG) were determined. Results. It was found that high levels of HbA1c and TG were associated with a low score on the MoCA test, while high levels of HDL were associated with better cognitive performance on said test. When dividing the sample based on the number of vascular risk factors to which they have been exposed, it was found that the greater the presence of risk factors, the stronger the relationship between HbA1c and TG and the worse cognitive performance. Conclusion. It is concluded that the relationship between biomarkers and brain functions is strong and dependent on the number of vascular risk factors to which patients are exposed.
References
Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care. 2016;22(7 Suppl):s176-s185.
Cooper AJ, Gupta SR, Moustafa AF, Chao AM. Sex/Gender Differences in Obesity Prevalence, Comorbidities, and Treatment. Curr Obes Rep. 2021;10(4):458-466. doi:10.1007/s13679-021-00453-x
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. doi:10.1038/nrendo.2017.151
Overton M, Pihlsgård M, Elmståhl S. Prevalence and Incidence of Mild Cognitive Impairment across Subtypes, Age, and Sex. Dement Geriatr Cogn Disord. 2019;47(4-6):219-232. doi:10.1159/000499763
Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137-149. doi:10.1016/j.diabres.2013.11.002
Instituto Nacional de Estadística y Geografía (INEGI) 2018. Comunicado de prensa núm 525/18. Ciudad de Mexico: INEGI http://www.beta.inegi.org.mx/contenidos/saladeprensa/boletines/2018/EstSociodemo/DEFUNCIONES2017.pdf » http://www.beta.inegi.org.mx/contenidos/saladeprensa/boletines/2018/EstSociodemo/DEFUNCIONES2017.pdf
Ramos A, Reyes G, Vieyra I. Revisión de la epidemiología del sobrepeso y obesidad. Psic-Obesidad, 2021 7(25). https://doi.org/10.22201/fesz.20075502e.2017.7.25.80749
Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185-1200. Published 2014 Sep 6. doi:10.7150/ijms.10001
Bellia C, Lombardo M, Meloni M, Della-Morte D, Bellia A, Lauro D. Diabetes and cognitive decline. Adv Clin Chem. 2022;108:37-71. doi:10.1016/bs.acc.2021.07.006
Song Y, Liu J, Zhao K, Gao L, Zhao J. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases. Cell Metab. 2021;33(10):1911-1925. doi:10.1016/j.cmet.2021.09.001
Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14(6):724-738. doi:10.1016/j.cmet.2011.08.016
Lo RY, Hubbard AE, Shaw LM, et al. Longitudinal change of biomarkers in cognitive decline. Arch Neurol. 2011;68(10):1257-1266. doi:10.1001/archneurol.2011.123
Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer's disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci. 2020;27(2):736-750. doi:10.1016/j.sjbs.2019.12.028
Nazaribadie M, Amini M, Ahmadpanah M, Asgari K, Jamlipaghale S, Nazaribadie S. Executive functions and information processing in patients with type 2 diabetes in comparison to pre-diabetic patients. J Diabetes Metab Disord. 2014;13(1):27. Published 2014 Feb 4. doi:10.1186/2251-6581-13-27
Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225-245. doi:10.1038/s41580-019-0190-7
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention. J Lipid Res. 2017;58(11):2083-2101. doi:10.1194/jlr.R076331
Agarwal M, Khan S. Plasma Lipids as Biomarkers for Alzheimer's Disease: A Systematic Review. Cureus. 2020;12(12):e12008. Published 2020 Dec 10. doi:10.7759/cureus.12008
Lamar M, Durazo-Arvizu RA, Rodriguez CJ, et al. Associations of Lipid Levels and Cognition: Findings from the Hispanic Community Health Study/Study of Latinos. J Int Neuropsychol Soc. 2020;26(3):251-262. doi:10.1017/S1355617719001000
Sterling NW, Lichtenstein M, Lee EY, et al. Higher Plasma LDL-Cholesterol is Associated with Preserved Executive and Fine Motor Functions in Parkinson's Disease. Aging Dis. 2016;7(3):237-245. Published 2016 May 27. doi:10.14336/AD.2015.1030
Zhang H, Zhu W, Niu T, et al. Inverted U-shaped correlation between serum low-density lipoprotein cholesterol levels and cognitive functions of patients with type 2 diabetes mellitus. Lipids Health Dis. 2021;20(1):103. Published 2021 Sep 12. doi:10.1186/s12944-021-01534-5
Pongudom S, Chinthammitr Y. Determination of Normal HbA1C Levels in Non-Diabetic Patients with Hemoglobin E. Ann Clin Lab Sci. 2019;49(6):804-809.
Hobson J. The Montreal Cognitive Assessment (MoCA). Occup Med (Lond). 2015;65(9):764-765. doi:10.1093/occmed/kqv078
Mueller ST, Piper BJ. The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. J Neurosci Methods. 2014;222:250-259. doi:10.1016/j.jneumeth.2013.10.024
Dikmen SS, Heaton RK, Grant I, Temkin NR. Test-retest reliability and practice effects of expanded Halstead-Reitan Neuropsychological Test Battery. J Int Neuropsychol Soc. 1999;5(4):346-356.
Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev. 2021;70:101397. doi:10.1016/j.arr.2021.101397
Nowak PF, Bożek A, Blukacz M. Physical Activity, Sedentary Behavior, and Quality of Life among University Students. Biomed Res Int. 2019;2019:9791281. Published 2019 Dec 18. doi:10.1155/2019/9791281
Repple J, Karliczek G, Meinert S, et al. Variation of HbA1c affects cognition and white matter microstructure in healthy, young adults [published correction appears in Mol Psychiatry. 2020 Mar 13;:]. Mol Psychiatry. 2021;26(4):1399-1408. doi:10.1038/s41380-019-0504-3
Ganguli M, Beer JC, Zmuda JM, et al. Aging, Diabetes, Obesity, and Cognitive Decline: A Population-Based Study. J Am Geriatr Soc. 2020;68(5):991-998. doi:10.1111/jgs.16321
Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer's Disease Pathology and Potential Therapies. Front Physiol. 2020;11:598. Published 2020 Jun 9. doi:10.3389/fphys.2020.00598
Zhou Z, Liang Y, Zhang X, et al. Low-Density Lipoprotein Cholesterol and Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci. 2020;12:5. Published 2020 Jan 30. doi:10.3389/fnagi.2020.00005
Downloads
Published
How to Cite
License
Copyright (c) 2024 Nutrición Clínica y Dietética Hospitalaria
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)