Effect of Euterpe oleracea (acai) on liver damage induced by fructose and ethanol in rats.
DOI:
https://doi.org/10.12873/451paredesKeywords:
Euterpe oleracea (acai), ethanol, fructose, liver damage, Transcription factorsAbstract
Introduction: Liver diseases have a high morbidity and
mortality rate worldwide, with fructose and ethanol consumption being the main triggers of structural and metabolic alterations in the adult population.
Objectives: To determine the effect of Euterpe oleracea
(acai) on fructose- and ethanol-induced liver damage in rats.
Materials: A purely experimental study with a control
group and post-test. The pulverized fruit of Euterpe oleracea (acai) was used and 30 male Holtzman rats were randomly assigned to 5 groups. The research groups received the following feeding scheme for 22 days: group I: pulverized balanced diet + water ad libitum, group II: balanced diet + 5% ethanol with 15% fructose, group III, IV and V: balanced diet with 1%, 3% and 9% acai, respectively + 5% ethanol with 15% fructose. After treatment, the animals
were anesthetized and subjected to partial hepatectomy,
removing a portion of the right medial lateral lobe (MLLL)
for processing histological slides and a portion of the left
medial lateral lobe (MLLL) for processing transcriptional in
dicators with the averages obtained.
Results: Euterpe oleracea (acai) ingestion increased the ex
pression levels of PPAR-α, PPAR-α /SREBP 1-c and PPAR-ɣ
/SREBP 1-c and decreased PPAR-ɣ and SREBP-1c. The histolo
gical profile showed less periportal and sinusoidal inflammation and congestion of centrilobular veins compared to controls.
Conclusions: Ingestion of Euterpe oleracea (acai) powder
had a hepatoprotective effect against the damage induced by ethanol and fructose consumption in rats.
References
Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Carga global de enfermedad hepática: actualización de 2023. J Hepatol [Internet]. 2023;79(2):516–37. Disponible en: http://dx.doi.org/10.1016/j.jhep.2023.03.017
Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. La epidemiología global de la enfermedad del hígado graso no alcohólico (NAFLD) y la esteatohepatitis no alcohólica (NASH): una revisión sistemática. Hepatología [Internet]. 2023 [citado el 21 de abril de 2024];77(4):1335–47. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36626630/
Teng MLP, Ng CH, Huang DQ, Chan KE, Tan DJH, Lim WH, et al. Incidencia y prevalencia global de la enfermedad del hígado graso no alcohólico. Clin Mol Hepatol [Internet]. 2023 [citado el 21 de abril de 2024];29(Supl):S32–42. Disponible en: http://dx.doi.org/10.3350/cmh.2022.0365
Carvallo Pamela, Carvallo Eugenia, Barbosa-da-Silva Sandra, Mandarim-de-Lacerda Carlos Alberto, Hernández Alfonso, del-Sol Mariano. Efectos Metabólicos del Consumo Excesivo de Fructosa Añadida. Int. J. Morphol. [Internet]. 2019 Sep [citado 2024 Jul 22] ; 37( 3 ): 1058-1066. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022019000301058&lng=es. http://dx.doi.org/10.4067/S0717-95022019000301058
Miño Bernal JF, López Morales E, Sandino NJ, Molano Franco D. Cirrosis hepática o falla hepática crónica agudizada: definición y clasificación. Rev Repert Med Cir [Internet]. 2022;31(2):112–22. Disponible en: http://dx.doi.org/10.31260/repertmedcir.01217372.1052
Roeb E, Weiskirchen R. Fructosa y esteatohepatitis no alcohólica. Frente Farmacol [Internet]. 2021;12. Disponible en: http://dx.doi.org/10.3389/fphar.2021.634344
Lucero D, Miksztowicz V, Macri V, López GH, Friedman S, Berg G, et al. Overproduction of altered VLDL in an insulin-resistance rat model: Influence of SREBP-1c and PPAR-α. Clin Investig Arterioscler [Internet]. 2015;27(4):167–74. Disponible en: http://dx.doi.org/10.1016/j.arteri.2014.11.002
Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Mecanismos moleculares de la acumulación de lípidos hepáticos en la enfermedad del hígado graso no alcohólico. Cell Mol Life Sci [Internet]. 2018 [citado el 21 de abril de 2024];75(18):3313–27. Disponible en: http://dx.doi.org/10.1007/s00018-018-2860-6
Osna NA, Donohue TM Jr, Kharbanda KK. Alcoholic liver disease: Pathogenesis and current management. Alcohol Research : Current Reviews. 2017;38(2):147.
Martinez-Castillo M, Altamirano-Mendoza I, Sánchez-Valle S, García-Islas L, Sánchez-Barragán M, Hernández-Santillán M, et al. Immune dysregulation and pathophysiology of alcohol consumption and alcoholic liver disease. Rev Gastroenterol Méx (Engl Ed) [Internet]. 2023;88(2):136–54. Disponible en: http://dx.doi.org/10.1016/j.rgmxen.2023.03.003
González J, D'Espessailles A, González-Mañán D, Juretić N, Catalán M, Riquelme C, et al. La suplementación con fructosa aumenta la expresión de factores lipogénicos y la esteatosis hepática inducida por una dieta alta en grasa [Internet]. Revistasoched.cl. [citado el 21 de abril de 2024]. Disponible en: https://www.revistasoched.cl/1_2024/1.pdf
Malnick SDH, Alin P, Somin M, Neuman MG. Enfermedad del hígado graso, alcohólica y no alcohólica: similares pero diferentes. Int J Mol Sci [Internet]. 2022 [citado el 21 de abril de 2024];23(24):16226. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36555867/
Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, et al. Açaí (Euterpe oleracea Mart.) in health and disease: A critical review. Nutrients [Internet]. 2023 [citado el 21 de abril de 2024];15(4):989. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36839349/
Silveira JT da, Rosa APC da, Morais MG de, Victoria FN, Costa JAV. An integrative review of Açaí (Euterpe oleracea and Euterpe precatoria): Traditional uses, phytochemical composition, market trends, and emerging applications. Food Res Int [Internet]. 2023 [citado el 21 de abril de 2024];173(113304):113304. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37803612/
Matta FV, Xiong J, Lila MA, Ward NI, Felipe-Sotelo M, Esposito D. Composición química y propiedades bioactivas de las bayas de açaí moradas y blancas comerciales y no comerciales. Alimentos [Internet]. 2020 [citado el 21 de abril de 2024];9(10):1481. Disponible en: http://dx.doi.org/10.3390/foods9101481
De Almeida Magalhães TSS, de Oliveira Macedo PC, Converti A, Neves de Lima ÁA. El uso de Euterpe oleracea Mart. Como una nueva perspectiva para el tratamiento y la prevención de enfermedades. Biomoléculas [Internet]. 2020 [citado el 21 de abril de 2024];10(6):813. Disponible en: http://dx.doi.org/10.3390/biom10060813
Pedrosa ML. El açai mejora la enfermedad del hígado graso no alcohólico (NAFLD) inducida por la fructosa. NutrHosp [Internet]. 2018 [citado el 21 de abril de 2024];35(2). Disponible en: https://pubmed.ncbi.nlm.nih.gov/29756964/
Allen AM, Van Houten HK, Sangaralingham LR, Talwalkar JA, McCoy RG. Healthcare cost and utilization in nonalcoholic fatty liver disease: Real‐world data from a large U.s. claims database. Hepatology [Internet]. 2018 [citado el 9 de junio de 2024];68(6):2230–8. Disponible en: http://dx.doi.org/10.1002/hep.30094
Moctezuma-Velázquez C. Tratamiento actual de la enfermedad por hígado graso no alcohólico. Rev Gastroenterol Mex [Internet]. 2018;83(2):125–33. Disponible en: http://dx.doi.org/10.1016/j.rgmx.2017.10.003
Morgan K, Uyuni A, Nandgiri G, Mao L, Castaneda L, Kathirvel E, et al. Altered expression of transcription factors and genes regulating lipogenesis in liver and adipose tissue of mice with high fat diet-induced obesity and nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol [Internet]. 2008 [citado el 15 de julio de 2024];20(9):843–54. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18794597/
Guerra JF da C, Maciel PS, de Abreu ICME, Pereira RR, Silva M, Cardoso L de M, et al. Dietary açai attenuates hepatic steatosis via adiponectin-mediated effects on lipid metabolism in high-fat diet mice. J Funct Foods [Internet]. 2015;14:192–202. Disponible en: http://dx.doi.org/10.1016/j.jff.2015.01.025
Jia Y, Kim J-Y, Jun H-J, Kim S-J, Lee J-H, Hoang MH, et al. Cyanidin is an agonistic ligand for peroxisome proliferator-activated receptor-alpha reducing hepatic lipid. Biochim Biophys Acta Mol Cell Biol Lipids [Internet]. 2013;1831(4):698–708. Disponible en: http://dx.doi.org/10.1016/j.bbalip.2012.11.012.
Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H, et al. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther [Internet]. 2023;245(108391):108391. Disponible en: http://dx.doi.org/10.1016/j.pharmthera.2023.108391
Martino H.S.D., Dias M.M.D.S., Noratto G., Talcott S., Mertens-Talcott S.U. Anti-lipidaemic and anti-inflammatory effect of açai (Euterpe oleracea Martius) polyphenols on 3T3-L1 adipocytes. J. Funct. Foods. 2016;23:432–443. doi: 10.1016/j.jff.2016.02.037. [CrossRef] [Google Scholar]. Disponible en: https://www.sciencedirect.com/science/article/pii/S1756464616000931#bib0135
De Souza MO, Souza e Silva L, de Brito Magalhães CL, de Figueiredo BB, Costa DC, Silva ME, et al. The hypocholesterolemic activity of açaí (Euterpe oleracea Mart.) is mediated by the enhanced expression of the ATP-binding cassette, subfamily G transporters 5 and 8 and low-density lipoprotein receptor genes in the rat. Nutr Res [Internet]. 2012;32(12):976–84. Disponible en: http://dx.doi.org/10.1016/j.nutres.2012.10.001
Lucero D, Miksztowicz V, Macri V, López GH, Friedman S, Berg G, et al. Overproduction of altered VLDL in an insulin-resistance rat model: Influence of SREBP-1c and PPAR-α. Clin Investig Arterioscler [Internet]. 2015;27(4):167–74. Disponible en: http://dx.doi.org/10.1016/j.arteri.2014.11.002
Knight BL, Hebbachi A, Hauton D, Brown A-M, Wiggins D, Patel DD, et al. A role for PPARα in the control of SREBP activity and lipid synthesis in the liver. Biochem J [Internet]. 2005;389(2):413–21. Disponible en: http://dx.doi.org/10.1042/bj20041896
Zacatenco U. CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS [Internet]. Cinvestav.mx. [citado el 21 de julio de 2024]. Disponible en: https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/1132/SSIT0016187.pdf?sequence=1
Muñoz EL-‐oliva, Martínez EM. SREBP-‐1c, ChREBP y LXR: Su influencia en el desarrollo del hígado graso no alcohólico [Internet]. Analesranf.com. [citado el 21 de julio de 2024]. Disponible en: https://analesranf.com/wp-content/uploads/2014/80_01/8001_03.pdf
De Oliveira PRB, da Costa CA, de Bem GF, Cordeiro VSC, Santos IB, de Carvalho LCRM, et al. Euterpe oleracea mart.-derived polyphenols protect mice from diet-induced obesity and fatty liver by regulating hepatic lipogenesis and cholesterol excretion. PLoS One [Internet]. 2015;10(12):e0143721. Disponible en: http://dx.doi.org/10.1371/journal.pone.0143721
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Nutrición Clínica y Dietética Hospitalaria

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)