Actividad antioxidante del fruto de Rubus sparsiflorus (Shiraca)
DOI:
https://doi.org/10.12873/431guijaPalavras-chave:
Antioxidante, Rubus sparsiflorus, shiraca, fruto, polifenoles, flavonoides, antocianinas, vitamina CResumo
Objetivo: Determinar la actividad antioxidante del fruto de Rubus sparsiflorus (shiraca). Material y métodos: Se preparó un homogenizado con agua destilada y se centrifugó a 15,000 rpm por 10 minutos, el sobrenadante se utilizó para realizar las determinaciones analíticas. Los polifenoles se determinaron con la técnica de Singleton y Rossi, los flavonoides con la técnica de Jia, Tang y Wu, la vitamina C con la técnica de Jagota y Dan y las antocianinas con la de Giusti y Wrolstad. Así mismo, se determinó la capacidad antioxidante utilizando las técnicas FRAP (Benzie y Strain), DPPH (Brand-Williams, Cuvellier y Berset), ABTS (Rice-Evans, Miller y Paganga) y el sistema ascorbato/cobre (Uchida y Kawakishi).
Resultados: La shiraca madura mostró un contenido de polifenoles de 415.4 mg. EAG/100g de fruta, flavonoides 72.03 mg.EC/100g de fruta y antocianinas 147.38 mg de cianidina-3-glucósido/100g de fruta que fueron más elevados que la shiraca verde, en cambio, el contenido de vitamina C fue similar en el fruto maduro (108.35 mg/100g) y el verde (118.52 mg/100g). Así mismo, la actividad antioxidante del fruto maduro evaluada con las técnicas FRAP (8.05 mmoles de Fe-II/100 g de fruta), DPPH (IC50 = 0.76 mg/mL), ABTS (IC50 = 0.147 mg/mL) y el sistema ascorbato/cobre (IC50 = 2.16 mg/mL) mostraron que el fruto maduro tuvo mayor capacidad antioxidante que el fruto verde.
Conclusiones: La shiraca principalmente la madura, es un fruto que posee una elevada capacidad antioxidante y un alto contenido de polifenoles, flavonoides y vitamina C.
Referências
- Georgieva E, Ivanova D, Zhelev Z, Bakalova R, Gulubova M, Aoki I. Mitochondrial Dysfunction and Redox Imbalance as a Diagnostic Marker of “Free Radical Diseases”. Anticancer Res. 2017; 37: 5373-5381. doi: 10.1155/2020/9829176.
- Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biology. 2013;1: 244–257. doi: 10.3390/medicines7080045.
- Harmand D. Aging: a theory based on free radical and radiation chemistry. J Geront 1956; 11(3): 298-300.
- Ziada AS, Marie-Soleil RS, Côté HCF. Updating the Free Radical Theory of Aging. Front Cell Dev Biol. 2020; 8: 575645. doi. 10.19045/bspab.2018.700197.
- Singh A, Kukreti R, Saso L, Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. 2019; 24, 1583. doi: 10.3390/molecules24081583.
- Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C content in fruits: biosynthesis and regulation. Front. Plant Sci. 2019 volume 9: 2006. doi: 10.3389/fpls.2018.02006.
- Szeto YT, Tomlinson B, Benzie IFF. Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation. British J Nut. 2002; 87: 55-59. doi: 10.1079/BJN2001483.
- Organización Mundial de la Salud. 57ª Asamblea Mundial de la Salud: Resolución WHA57.17. 2002.
- Ursini F, Maiorino M, Formanb HJ. Redox homeostasis: The Golden Mean of healthy living. Redox Biology. 2016; 8: 205-215. doi: 10.1016/j.redox.2016.01.010.
- Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM. Redox regulation of antioxidants, autophagy, and the response to stress: Implications for electrophile therapeutics. Free Rad Biol Med. 2014; 71: 196-207. doi: 10.1016/j.freeradbiomed.2014.03.025.
- Madamanchi MR, Runge MS. Redox signaling in cardiovascular health and disease. Free Rad Biol Med. 2013; 61: 473-501. doi:10.1016/j.freeradbiomed. 2013.04.001.
- Görlach A, Dimova EY, Petry A, Martínez-Ruiz A, Hernansanz-Agustín P, Rolo AP, Palmeira CM, Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?. Redox Biology. 2015; 6: 372-385. doi: 10.1016/j.redox.2015.08.016
- Garzón GA, Riedl KM, Schwartz SJ. Determination of anthocyanins, total phenolic content and antioxidant activity in Andes Berry (Rubus glaucus Benth). J Food Sci. 2009; 74: C227-C232. doi: 10.1111/j.1750-3841.2009.01092.x
- He X, Liu RH. Phytochemicals of apple peels: isolation, structure elucidation and their antiproliferative and antioxidant activities. J Agric Food Chem. 2008; 56: 9905-9910. doi: 10.1021/jf8015255
- Vieira F, Borges G, Copetti C, Gonzaga L, Nunes E, Fett R. Activity and contents of polyphenolic antioxidants in the whole fruit, flesh and peel of three apple cultivars. Arch Latinoam Nutr. 2009; 59(1): 101-106.
- Sandate-Flores L. Romero-Esquivel E. Rodríguez-Rodríguez J. Rostro-Alanis M. Melchor-Martínez EM. Castillo-Zacarías C et al. Functional Attributes and Anticancer Potentialities of Chico (Pachycereus Weberi) and Jiotilla (Escontria Chiotilla) Fruits Extract. Plants. 2020; 9(11): 1623. doi:10.3390/plants9111623.
- Jagota SK. Dani HMA. A New Colorimetric Technique for Estimation of vitamin C Using Folin Phenol Reagent. Anal. Biochem. 1992; 127: 178-132. doi: 10.1016/0003-2697(82)90162-2
- Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybic-phophotungstic acid reagents. Am J Eno Vitic. 1965; 16: 144-158.
- Jia Z, Tang M, Wu J. The determination of flavonoids contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999; 64: 555-599. doi: 10.1016/S0308-8146(98)00102-2.
- Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by uv-visible spectroscopy. Unit F1.2. In: R.E, Wrolstad, S.J, Schwartz, editors. Handbook of Food Analytical Chemistry. Wiley: New York; 2005. pp. 19–31.
- Brand-Williams W, Cuvellier ME, Berset C. Use of free radical method to evaluate antioxidant activity. Food Sci Tech. Lebensm.-Wiss. Technol. 1995; 28: 25-30. doi: 10.1016/S0023-6438(95)80008-5.
- Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationship of flavonoides and phenolic acids. Free Radical Biol Med. 1996; 20: 933-956. doi: 10.1016/0891-5849(95)02227-9.
- Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power” the FRAP assay. Anal. Biochem. 1996, 239, 70-76. doi: 10.1006/abio.1996.0292.
- Uchida K, Kawakishi S. Site-specific oxidation of angiotensin I copper (II) and L-ascorbate: conversion of histidine residues to 2-imidazolones. Arch Biochem Biophys 1990; 283: 20-26. doi: 10.1016/0003-9861(90)90606-Y.
- Guija H, Troncoso L, Guija E. Propiedades prooxidantes del camu camu (Myrciaria dubia). An Fac Med Lima. 2005; 66(4): 261-268. doi: 10.15381/anales.v66i4.1320.
- Guofang X, Xiaoyan X, Xiaoli Z, Yongling L, Zhibing Z. Changes in phenolic profiles and antioxidant activity in rabbiteye blueberries during ripening. Int J Food Prop. 2019; 22 (1): 320–329. doi: 10.1080/10942912.2019.1580718.
- Davey M, Montagu M, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, et al. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects on processing. J Sci Food Agric 2000; 80: 825-860. doi: 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6
- Shin D, Chae KS, Choi HR, Lee SJ, Gim SW, Kwon GT, et al. Bioactive and pharmacokinetic characteristics of pre-matured black raspberry, Rubus occidentalis. Ital. J. Food Sci. 2018; 30: 428-439.
- Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. Anthocyanins phenolics and antioxidant capacity in diverse small fruits: Vaccinium, Rubus and Ribes. J Agric Food Chem. 2002; 50: 519-525. doi: 10.1021/jf011062r.
- Wolfe K, Wu X, Liu RH. Antioxidant activity of Apple peels. J Agric Food Chem. 2003; 51: 609-614. doi : 10.1021/jf020782a.
Downloads
Publicado
Como Citar
Licença
Copyright (c) 2023 Nutrición Clínica y Dietética Hospitalaria
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)