Obtaining pectinases by solid-state fermentation with different carbon sources
DOI:
https://doi.org/10.12873/454aldasPalabras clave:
'Gender difference'Resumen
Introduction: The use of agroindustrial waste, such as fruit peels, in the production of wines and ciders constitutes an innovative strategy to reduce food waste and promote the circular economy.
Objective: To obtain pectinases through solid-state fermentation using different carbon sources, with the aim of applying them as clarifying agents in the liquor industry.
Materials and Methods: A completely randomized block design (CRBD) with an ABC factorial arrangement was used, where factor A corresponded to the carbon sources (passion fruit, pineapple, and orange peels), factor B to the type of cider (orange and plum), and factor C to the enzyme concentrations (2% and 4%). Data were analyzed using ANOVA with a significance level of p < 0.05, evaluating physicochemical parameters such as pH, acidity, °Brix, absorbance, and turbidity.
Results: Values ranged from pH (2.60–3.93), acidity (0.54–0.62%), °Brix (6.75–7.03), absorbance (0.60–1.82), and turbidity (19.60–121.65). Passion fruit peel exhibited the highest pectin esterase activity (22,000 U/mL) and the greatest absorbance reduction (2.45 to 2.25), achieving an overall viscosity decrease of 93.92%, demonstrating its high efficacy as a clarifier. Microbiological analyses showed that mold and yeast counts remained within established limits, and no mesophilic aerobes, total coliforms, or enterobacteria were detected, ensuring the safety of the final product.
Conclusion: Passion fruit peel stood out as the best carbon source due to its high enzymatic activity and clarification efficiency, demonstrating the potential of agroindustrial waste to generate added value and promote sustainable processes in the liquor industry.
Referencias
1. Aime-Ninga K, Carly-Desobgo ZS, Sirshendu D, Jong-Nso E. Pectinase hydrolysis of guava pulp: effect on the physicochemical characteristics of its juice. Heliyon. 2021;7(10):e08141. https://doi.org/10.1016/j.heliyon.2021.e08141 DOI: https://doi.org/10.1016/j.heliyon.2021.e08141
2. Balamaze J, Wambere J. Production of good quality wine from single and mixture of fruit peels. African Journal of Food, Agriculture, Nutrition and Development. 2017;17(1). https://doi.org/10.18697/ajfand.77.15515 DOI: https://doi.org/10.18697/ajfand.77.15515
3. Barbosa-Santos TDA, Neto AF, De-Freitas ST, De-Souza Araújo J, Oliveira Vilar SB, Lima MS. Phytochemical compounds and antioxidant activity of the pulp of two Brazilian passion fruit species: Passiflora cincinnata Mast. and Passiflora edulis Sims. International Journal of Fruit Science. 2021;21(1):255-269. https://doi.org/10.1080/15538362.2021.1872050 DOI: https://doi.org/10.1080/15538362.2021.1872050
4. Campos-Rodriguez J, Acosta-Coral K, Moreno-Rojo C, Paucar-Menacho LM. Passion fruit (Passiflora edulis): Nutritional composition, bioactive compounds, utilization of by-products, biocontrol, and organic fertilization in cultivation. Scientia Agropecuaria. 2023;14(4). https://doi.org/10.17268/sci.agropecu.2023.040 DOI: https://doi.org/10.17268/sci.agropecu.2023.040
5. Caro-Hernández PA, Tobar JA. Análisis microbiológico de superficies en contacto con alimentos. Entramado. 2020;16(1):240-249. https://doi.org/10.18041/1900-3803/entramado.1.6126 DOI: https://doi.org/10.18041/1900-3803/entramado.1.6126
6. Chen H, Wang L. Enzymatic hydrolysis of pretreated biomass. In: Technologies for Biochemical Conversion of Biomass. 2017. p. 65-99. https://doi.org/10.1016/B978-0-12-802417-1.00004-1 DOI: https://doi.org/10.1016/B978-0-12-802417-1.00004-1
7. Chuma Barrigas WM. Evaluación del proceso de clarificación de vino de uva, artesanal e industrial, utilizando látex de papaya (papaina) y gel de yausabara (Pavonia sepium). [Tesis de grado]. Universidad Técnica del Norte; 2018. https://repositorio.utn.edu.ec/bitstream/123456789/8484/1/03%20EIA%20466%20TRABAJO%20DE%20GRADO.pdf
8. Claus H, Mojsov K. Enzymes for wine fermentation: Current and perspective applications. Fermentation. 2018;4(3):52. https://doi.org/10.3390/fermentation4030052 DOI: https://doi.org/10.3390/fermentation4030052
9. Cury K, Aguas Y, Martinez A, Olivero R, Chams L. Agroindustrial waste impact, management and exploitation. Rev Colombiana Cienc Anim. 2017;9:122-132. https://revistas.unisucre.edu.co/index.php/recia/article/view/530/pdf DOI: https://doi.org/10.24188/recia.v9.nS.2017.530
10. Davidson M, Roth L, Gambrel-Lenarz S. Coliform and other indicator bacteria. In: Standard Methods for the Examination of Water and Wastewater. Apha Press; 2012. https://ajph.aphapublications.org/doi/abs/10.2105/9780875530024ch07
11. Ecuadorian Institute of Standardization [INEN]. Ecuadorian Technical Standard NTE INEN 2 325. Alcoholic beverages. Beer. pH determination. Quito; 2002. https://www.fao.org/faolex/results/details/en/c/LEX-FAOC039889/
12. Ecuadorian Institute of Standardization [INEN]. Ecuadorian Technical Standard NTE INEN 374. Alcoholic beverages. Fruit wine. Requirements. Quito; 2016. https://es.scribd.com/document/372621930/Nte-Inen-374-3-Revision
13. Ecuadorian Institute of Standardization [INEN]. Ecuadorian Technical Standard NTE INEN 380. Determinación de sólidos solubles, método refractométrico. Quito; 1985. https://es.scribd.com/document/363596001/380
14. Ecuadorian Institute of Standardization [INEN]. Ecuadorian Technical Standard NTE INEN 2802. Bebidas alcohólicas. Cocteles o bebidas alcohólicas mixtas y los aperitivos. Requisitos. Quito; 2015. https://es.scribd.com/document/392769622/Nte-inen-2802-Bebidas-Alcoholicas-Cocteles-o-Bebidas-Alcoholicas
15. Espejo F. Role of commercial enzymes in wine production: a critical review of recent research. J Food Sci Technol. 2020;58(2):9-21. https://doi.org/10.1007/s13197-020-04489-0 DOI: https://doi.org/10.1007/s13197-020-04489-0
16. Ewen-Cameron DT, Faour-Klingbeil D. Impact of food waste on society, specifically at retail and foodservice levels in developed and developing countries. Foods. 2024;13(13):2098. https://doi.org/10.3390/foods13132098 DOI: https://doi.org/10.3390/foods13132098
17. Fernandez A, Sette P, Echegaray M, Soria J, Salvatori D, Mazza G, Rodriguez R. Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes. Biomass Conversion and Biorefinery. 2023;13:12509-12526. https://doi.org/10.1007/s13399-021-02197-z DOI: https://doi.org/10.1007/s13399-021-02197-z
18. García-García P, Galindo-Alcántara A, Ruiz-Acosta SD. Pectin extraction methods in fruits: Systematic review. Ecosistemas y Recursos Agropecuarios. 2024;10(3). https://doi.org/10.19136/era.a10niii.3728 DOI: https://doi.org/10.19136/era.a10nNEIII.3728
19. Haile S, Ayele A. Pectinase from microorganisms and its industrial applications. Scientific World Journal. 2022;2022:1881305. https://doi.org/10.1155/2022/1881305 DOI: https://doi.org/10.1155/2022/1881305
20. Hreeba K, Aboshaloa E, Almusrati M. Comparative quantitative study of acetyl salicylic acid in aspirin samples using spectrophotometry and volumetric methods. Alqalam Journal of Medical and Applied Sciences. 2025;8(2):832-835. https://doi.org/10.54361/ajmas.258240 DOI: https://doi.org/10.54361/ajmas.258240
21. International Organization for Standardization. International Organization for Standardization ISO 7027-1:2016. Water quality - Determination of turbidity - Part 1: Quantitative methods (ISO 7027-1:2016). Geneva; 2016. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0057502
22. Lozano-Química A, López E. Endopolygalacturonase and pectinesterase from Aspergillus niger. Revista Colombiana de Biotecnología. 2001;3(2):85-91. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/30079
23. Mehraj M, Das S, Feroz F, Wani W, Dar SQ, Kumar S, et al. Nutritional composition and therapeutic potential of pineapple peel - a comprehensive review. Chem Biodivers. 2024;21(5):e202400315. https://doi.org/10.1002/cbdv.202400315 DOI: https://doi.org/10.1002/cbdv.202400315
24. Molina-Hernández J, Martínez-Correa H, Andrade-Mahecha M. Agroindustrial potential of passion fruit epicarp as active food ingredient. Información Tecnológica. 2019;30(2):45-53. https://doi.org/10.4067/S0718-07642019000200245 DOI: https://doi.org/10.4067/S0718-07642019000200245
25. Muñoz R, Cuesta M. Extracción de pectina a partir de la corteza de maracuyá (Passiflora edulis var. flavicarpa degener). Revista Politécnica. 2012;31:95-103. https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/195
26. Olivera S, Araújo S, Denchev Z. Polyamide microparticles with immobilized enological pectinase as efficient biocatalysts for wine clarification: The role of the polymer support. Molecules. 2024;30(1):114. https://doi.org/10.3390/molecules30010114 DOI: https://doi.org/10.3390/molecules30010114
27. Pagan-Gilabert J. Degradación enzimática y características físicas y químicas de la pectina del bagazo de melocotón [tesis de grado]. Biblioteca Virtual Miguel de Cervantes; 1999. https://www.cervantesvirtual.com/nd/ark:/59851/bmcz8965
28. Pilco CJ, Moreno-Mejía C, Mazabanda-Toslombo R, Merino-Azogues DP-B. Identification and quantification of Saccharomyces cerevisiae yeasts in the fermentation of wine musts. Revista Latinoamericana de Ciencias Sociales y Humanidades. 2023;4(1):2430. https://doi.org/10.56712/latam.v4i1.427 DOI: https://doi.org/10.56712/latam.v4i1.427
29. Ramos-Alvarado MM, Cadenas-González MT, Bolio-López GI, Leo-Avelino G, Maciel-Cerda A, Castañeda-Castañeda C, et al. Biopelículas a base de pectina de cáscara de naranja (Citrus sinensis): Caracterización física, química y estructural. Agroindustrial Science. 2020;10(3):273-278. https://doi.org/10.17268/agroind.sci.2020.03.08 DOI: https://doi.org/10.17268/agroind.sci.2020.03.08
30. Ratkovich N, Esser C, Resende-Machado AM, Almeida-Mendes B, Gracas-Cardoso M. The spirit of cachaça production: An umbrella review of processes, flavour, contaminants and quality improvement. Foods. 2023;12(17):3325. https://doi.org/10.3390/foods12173325 DOI: https://doi.org/10.3390/foods12173325
31. Reynold A, Knox A, Di-Profio F. Evaluation of macerating pectinase enzyme activity under various temperature, pH and ethanol regimes. Beverages. 2018;4(1):10. https://doi.org/10.3390/beverages4010010 DOI: https://doi.org/10.3390/beverages4010010
32. Rodríguez-Nieto J, Restrepo-Sánchez P. Extraction of pectic enzymes from lulo (Solanum quitoense Lam) involved in softening. Acta Biológica Colombiana. 2011;16(2):193-204. https://revistas.unal.edu.co/index.php/actabiol/article/view/1551
33. Salazar-López NJ, Enríquez-Valencia S, Zuñiga-Martínez B, González-Aguilar G. Agroindustrial residues as sources of nutrients and phenolic compounds. Epistemus (Sonora). 2023;17(34):60-69. https://doi.org/10.36790/epistemus.v17i34.265 DOI: https://doi.org/10.36790/epistemus.v17i34.265
34. Segura A, Manríquez A, Santos D, Ambriz E, Casas P, Serafín-Muñoz AH. Obtención de bioetanol a partir de residuos de cáscara de piña (Ananas comosus). Jóvenes en la Ciencia. 2020;8:1-8. https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/3234
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Nutrición Clínica y Dietética Hospitalaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)
