The Effect of caloric restriction and low fructose consumption on oxidative damage in adults with obesity.



Palabras clave:

Oxidative stress, obesity, calorie restriction


Background: The consumption of macronutrients rich in sugars, mainly fructose, promote metabolic changes and induce insulin resistance, hepatic and extrahepatic fatty acid deposits, as well as an increase in the generation of free radicals and oxidative stress.

Methods: Randomized clinical study, 74 subjects participated, divided into 2 group: a calorie-restricted diet (n=37) and a low-fructose diet (n=37). They were evaluated at the beginning and 6 weeks after the implementation of the diet, using anthropometric and biochemical parameters. Descriptive statistics were used to analyze the data, Student's t test for two independent samples considering unequal variances and for means of two paired samples. Level p<0.05 was considered in each analysis test.

Results: The body mass index (BMI) shows statistically significant differences when comparing both groups after the application of the diets, the waist and hip circumference were modified by the implementation of the diet in each independent group, as was the waist-hip ratio (WHR). In the low-fructose diet group, an increase in blood glucose, cholesterol, and high-density lipoproteins (HDL) was observed. In the group with calorie restriction, a statistical difference in cholesterol levels was observed. There were no statistically significant differences in lipid peroxidation or oxidized carbonyls.

Conclusion: The modifications in hepatic metabolism could be related to the energy quantity and the source of macronutrients.



Shukla A, Kumar K, Singh A. Association between obesity and selected morbidities: a study of BRICS countries. PLoS One. 2014 Apr 9;9(4):e94433. doi: 10.1371/journal.pone.0094433.

Bray GA. Evaluation of obesity. Who are the obese? Postgrad Med. 2003 Dec;114(6):19-27, 38. doi: 10.3810/pgm.2003.12.1544.

Manna P, Jain SK. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab Syndr Relat Disord. 2015 Dec; 13(10):423-44. doi: 10.1089/met.2015.0095.

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004 Dec; 114(12):1752-61. doi: 10.1172/JCI21625.

Zhou Y, Li H, Xia N. The Interplay Between Adipose Tissue and Vasculature: Role of Oxidative Stress in Obesity. Front Cardiovasc Med. 2021 Mar 4;8:650214. doi: 10.3389/fcvm.2021.650214.

Horvath TL, Andrews ZB, Diano S. Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol Metab. 2009 Mar; 20(2):78-87. doi: 10.1016/j.tem.2008.10.003.

Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB. Adipose tissue as an endocrine organ: from theory to practice. J Pediatr (Rio J). 2007 Nov;83(5 Suppl):S192-203. doi: 10.2223/JPED.1709.

Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009 Aug;15(8):914-20. doi: 10.1038/nm.1964.

Khan NI, Naz L, Yasmeen G. Obesity: an independent risk factor for systemic oxidative stress. Pak J Pharm Sci. 2006 Jan;19(1):62-5.

Ozata M, Mergen M, Oktenli C, Aydin A, Sanisoglu SY, Bolu E, et al. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. 2002 Nov;35(8):627-31. doi: 10.1016/s00099120(02)00363-6.

Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab. 2021 Dec 7;33(12): 2329-2354. doi: 10.1016/j.cmet.2021.09.010.

Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke

Statistics Subcommittee. Heart Disease and Stroke Statistics2020 Update: A Report From the American Heart Association. Circulation. 2020 Mar 3;141(9):e139-e596. doi: 10.1161/CIR. 0000000000000757.

Ebbeling CB, Feldman HA, Chomitz VR, Antonelli TA, Gortmaker SL, Osganian SK, et al. A randomized trial of sugar-sweetened beverages and adolescent body weight. N Engl J Med. 2012 Oct 11;367(15):1407-16. doi: 10.1056/NEJMoa1203388.

de Ruyter JC, Olthof MR, Seidell JC, Katan MB. A trial of sugarfree or sugar-sweetened beverages and body weight in children. New England Journal of Medicine. 2012. 367(15), 1397-1406.

Schwimmer JB, Ugalde-Nicalo P, Welsh JA, Angeles JE, Cordero M, Harlow KE, et al. Effect of a Low Free Sugar Diet vs Usual Diet on

Nonalcoholic Fatty Liver Disease in Adolescent Boys: A Randomized Clinical Trial. JAMA. 2019;321(3):256–265. doi:10.1001/jama. 2018.20579

Casanueva E. Kaufer-Horwitz M. Peréz-Lizaur AB. Arroyo P. Nutriología Médica. Editorial Médica Panamericana; 2001:608-609p.

Lohman GT, Roche FA, Martolrell R. Anthropometric standarization reference manual. Illinois:Human Kinetics Books; 1988.

Garrow J, Webster J. Quetelet index (W/H2) as a measure of fatness. Int J Obes. 1985; 9(2): 147-53.

Norma Oficial Mexicana NOM-043-SSA2-2012. Servicios básicos de salud. Promoción y educación para la salud en materia alimentaria. Criterios para brindar orientación. Secretaria de Salud. Diario Oficial de la Federación. 22 de enero de 2013.Disponible en

Martínez-Morúa A, Soto-Urquieta MG, Franco-Robles E, ZúñigaTrujillo I, Campos-Cervantes A, Pérez-Vázquez V, et al. Curcumin decreases oxidative stress in mitochondria isolated from liver and kidneys of high-fat diet-induced obese mice. J Asian Nat Prod Res. 2013;15(8):905-915. doi:10.1080/10286020.2013.802687.

NOM-043-SSA2-2012. Servicios básicos de salud. Promoción y educación para la salud en materia alimentaria. Criterios para brindar orientación. Declaración de Helsinki de la Asociación Médica Mundial. Disponible en:

Reglamento de la Ley General de Salud en materia de investigación. Disponible en: gley/Reg_LGS_MIS.pdf.

Mayes PA. Intermediary metabolism of fructose. Am J Clin Nutr. 1993 Nov;58(5 Suppl):754S-765S. doi: 10.1093/ajcn/58.5.754S.

Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr. 2002 Nov;76(5):911-22. doi: 10.1093/ajcn/76.5.911.

Geidl-Flueck B, Hochuli M, Németh Á, Eberl A, Derron N, Köfeler HC, et al. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J Hepatol. 2021 Jul;75(1):46-54. doi: 10.1016/j.jhep.2021.02.027.

Lofley AC, Root MM. Macronutrients Association with Change in Waist and Hip Circumference Over 9 Years. J Am Coll Nutr. 2017.36(1):57-63. doi: 10.1080/07315724.2016.1183241.

Aeberli I, Hochuli M, Gerber PA, Sze L, Murer SB, Tappy L, et al. Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial. Diabetes Care. 2013 Jan;36(1):150-6. doi: 10.2337/dc12-0540.

Hochuli M, Aeberli I, Weiss A, Hersberger M, Troxler H, Gerber PA, et al. Sugar-sweetened beverages with moderate amounts of fructose, but not sucrose, induce Fatty Acid synthesis in healthy young men: a randomized crossover study. J Clin Endocrinol Metab. 2014 Jun;99(6):2164-72. doi: 10.1210/jc.2013-3856.

Solinas G, Borén J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: More friend than foe? Mol Metab. 2015 Mar 20;4(5):367-77. doi: 10.1016/j.molmet.2015.03.004.

Cioffi F, Senese R, Lasala P, Ziello A, Mazzoli A, Crescenzo R, et al.

Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats. Nutrients. 2017 Mar 24;9(4):323. doi: 10.3390/nu9040323.




Cómo citar

Beltrán Campos, V., Campos Zamora, M. J., Flores Martínez , C., Medina Terán, R. D., López Lemus, H. L., & Ramírez Emiliano , J. (2024). The Effect of caloric restriction and low fructose consumption on oxidative damage in adults with obesity. Nutrición Clínica Y Dietética Hospitalaria, 44(1).



Artículos originales