Properties and Bioactivity of Carrageenan, Myofibril, and Collagen-Based Smoked Edible Films

Autores/as

  • Roike Iwan MONTOLALU Department of Fisheries Product Processing, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia https://orcid.org/0000-0001-8769-8381
  • Henny Adeleida DIEN Department of Fisheries Products Processing, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University
  • Feny MENTANG Department of Fisheries Products Processing, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University
  • Nurmeilita TAHER Department of Fisheries Products Processing, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University
  • Siegfried BERHIMPON Department of Fishery Products Technology, Artha Wacana Christian University, Kupang, Indonesia

DOI:

https://doi.org/10.12873/442montolalu

Palabras clave:

Smoked Edible Film, Carrageenan, Myofibril, Collagen, Characteristic

Resumen

The objective of this study is to develop and evaluate the properties of smoked edible film (EF) composed of carrageenan, myofibril, and collagen. The smoked EF was prepared by incorporating 0.8% liquid smoke. The analysis focused on various parameters including pH, physical properties such as thickness, solubility, tensile strength, elongation percentage, and water vapor transmission rate (WVTR). Sensory evaluation was also conducted to assess the texture attributes of the coated product, including wateriness, firmness, elasticity, hardness, and juiciness. The findings revealed that the concentration of the ingredients influenced the thickness of the EF, with myofibril proteins exhibiting higher concentrations compared to carrageenan and collagen. Both collagen and myofibril demonstrated maximum solubility at a concentration of 6%, while carrageenan achieved optimal solubility at concentrations ranging from 2 to 2.5%. Carrageenan exhibited significantly higher tensile strength compared to myofibril and collagen, whereas collagen demonstrated greater elasticity than carrageenan and myofibril protein. Moreover, myofibril protein film exhibited a lower water vapor transmission rate compared to carrageenan and collagen films. In terms of sensory assessment, carrageenan displayed high elasticity and juiciness, while collagen and myofibril showed high firmness and hardness. All EFs showed better antioxidant activity compared to Trolox (EC50 < 95.57 µg/mL).

Biografía del autor/a

Henny Adeleida DIEN, Department of Fisheries Products Processing, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University

Department of Fisheries Products Processing, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University

Feny MENTANG, Department of Fisheries Products Processing, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University

Department of Fisheries Products Processing, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University

Nurmeilita TAHER, Department of Fisheries Products Processing, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University

Department of Fisheries Products Processing, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University

Siegfried BERHIMPON, Department of Fishery Products Technology, Artha Wacana Christian University, Kupang, Indonesia

Department of Fishery Products Technology, Artha Wacana Christian University, Kupang, Indonesia

Citas

Alam, J., Alhoshan, M., Shukla, A. K., Aldalbahi, A., & Ali, F. A. A. (2019). k-Carrageenan – A versatile biopolymer for the preparation of a hydrophilic PVDF composite membrane. European Polymer Journal, 120, 109219. https://doi.org/10.1016/j.eurpolymj.2019.109219

Berhimpon, S., Montolalu, R. I., Dien, H. A., Mentang, F., & Meko, A. U. I. (2018). Concentration and application methods of liquid smoke for exotic smoked Skipjack (Katsuwonus pelamis L.). International Food Research Journal, 25(5).

Bishop, G., Styles, D., & Lens, P. N. L. (2021). Environmental performance of bioplastic packaging on fresh food produce: A consequential life cycle assessment. Journal of Cleaner Production, 317, 128377. https://doi.org/10.1016/j.jclepro.2021.128377

Briones, A. V, Ambal, W. O., Estrella, R. R., Pangilinan, R., De Vera, C. J., Pacis, R. L., Rodriguez, N., & Villanueva, M. A. (2004). Tensile and Tear Strength of Carrageenan Film from Philippine Eucheuma Species. Marine Biotechnology, 6(2), 148–151. https://doi.org/10.1007/s10126-003-0005-9

Das, D., Panesar, P. S., Saini, C. S., & Kennedy, J. F. (2022). Improvement in properties of edible film through non-thermal treatments and nanocomposite materials: A review. Food Packaging and Shelf Life, 32, 100843. https://doi.org/10.1016/j.fpsl.2022.100843

Dien, H. A., Montolalu, R. I., & Berhimpon, S. (2019). Liquid smoke inhibits growth of pathogenic and histamine forming bacteria on skipjack fillets. IOP Conference Series: Earth and Environmental Science, 278(1), 12018. https://doi.org/10.1088/1755-1315/278/1/012018

Donhowe, G. I., & Fennema, O. R. (1994). Edible films and coatings: Characteristics, formation, definitions, and testing methods. In J. Krochta, E. Baldwin, & M. Nisperos-Carriedo (Eds.), Edible Coatings and Films to Improve Food Quality (pp. 11–17). Technomic Publ. Co., Inc., Lancaster, PA.

Gaikwad, K. K., Singh, S., & Ajji, A. (2019). Moisture absorbers for food packaging applications. Environmental Chemistry Letters, 17(2), 609–628. https://doi.org/10.1007/s10311-018-0810-z

Gioffrè, M., Torricelli, P., Panzavolta, S., Rubini, K., & Bigi, A. (2012). Role of pH on stability and mechanical properties of gelatin films. Journal of Bioactive and Compatible Polymers, 27(1), 67–77. https://doi.org/10.1177/0883911511431484

Goel, N., Fatima, S. W., Kumar, S., Sinha, R., & Khare, S. K. (2021). Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnology Reports, 30, e00613. https://doi.org/10.1016/j.btre.2021.e00613

Gontard, N., Guilbert, S., & Cuq, J.-L. (1992). Edible Wheat Gluten Films: Influence of the Main Process Variables on Film Properties using Response Surface Methodology. Journal of Food Science, 57(1), 190–195. https://doi.org/10.1111/j.1365-2621.1992.tb05453.x

Gonzalez, L. G., & Wess, T. J. (2013). The effects of hydration on the collagen and gelatine phases within parchment artefacts. Heritage Science, 1(1), 14. https://doi.org/10.1186/2050-7445-1-14

Heruwati, E. S., Murtini, J. T., Rahayu, S., & Suherman, M. (2017). Pengaruh Jenis Ikan dan Zat Penambahan Terhadap Elastisitas Surimi Ikan Air Tawar. Jurnal Penelitian Perikanan Indonesia, 1(1), 86–94.

Ibrahim, I. D., Hamam, Y., Sadiku, E. R., Ndambuki, J. M., Kupolati, W. K., Jamiru, T., Eze, A. A., & Snyman, J. (2022). Need for Sustainable Packaging: An Overview. In Polymers (Vol. 14, Issue 20). https://doi.org/10.3390/polym14204430

Irawan, I. (2021). Characteristics of Kappaphycus alvarezii carrageenan from different cultivation locations. Berkala Perikanan Terubuk, 49(2), 902–908.

Karl, H., Lehmann, I., Manthey-Karl, M., Meyer, C., & Ostermeyer, U. (2014). Comparison of nutritional value and microbiological status of new imported fish species on the German market. International Journal of Food Science & Technology, 49(11), 2481–2490. https://doi.org/10.1111/ijfs.12543

Kirkness, M. W. H., Lehmann, K., & Forde, N. R. (2019). Mechanics and structural stability of the collagen triple helix. Current Opinion in Chemical Biology, 53, 98–105. https://doi.org/10.1016/j.cbpa.2019.08.001

Kirtil, E., Aydogdu, A., Svitova, T., & Radke, C. J. (2021). Assessment of the performance of several novel approaches to improve physical properties of guar gum based biopolymer films. Food Packaging and Shelf Life, 29, 100687. https://doi.org/10.1016/j.fpsl.2021.100687

Kwansa, A. L., De Vita, R., & Freeman, J. W. (2016). Tensile mechanical properties of collagen type I and its enzymatic crosslinks. Biophysical Chemistry, 214–215, 1–10. https://doi.org/10.1016/j.bpc.2016.04.001

Latorre, M. E., Lifschitz, A. L., & Purslow, P. P. (2016). New recommendations for measuring collagen solubility. Meat Science, 118, 78–81. https://doi.org/10.1016/j.meatsci.2016.03.019

Li, Z.-R., Wang, B., Chi, C., Zhang, Q.-H., Gong, Y., Tang, J.-J., Luo, H., & Ding, G. (2013). Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius). Food Hydrocolloids, 31(1), 103–113. https://doi.org/10.1016/j.foodhyd.2012.10.001

Lingbeck, J. M., Cordero, P., O’Bryan, C. A., Johnson, M. G., Ricke, S. C., & Crandall, P. G. (2014). Functionality of liquid smoke as an all-natural antimicrobial in food preservation. Meat Science, 97(2), 197–206. https://doi.org/10.1016/j.meatsci.2014.02.003

Montolalu, R. I., Tashiro, Y., Matsukawa, S., & Ogawa, H. (2008). Effects of extraction parameters on gel properties of carrageenan from Kappaphycus alvarezii (Rhodophyta). Journal of Applied Phycology, 20(5), 521–526. https://doi.org/10.1007/s10811-007-9284-2

Nagai, T., & Suzuki, N. (2000). Isolation of collagen from fish waste material — skin, bone and fins. Food Chemistry, 68(3), 277–281. https://doi.org/10.1016/S0308-8146(99)00188-0

Nurilmala, M., Suryamarevita, H., Husein Hizbullah, H., Jacoeb, A. M., & Ochiai, Y. (2022). Fish skin as a biomaterial for halal collagen and gelatin. Saudi Journal of Biological Sciences, 29(2), 1100–1110. https://doi.org/10.1016/j.sjbs.2021.09.056

Piez, K. A., & Trus, B. L. (1977). Microfibrillar structure and packing of collagen: Hydrophobic interactions. Journal of Molecular Biology, 110(4), 701–704. https://doi.org/10.1016/S0022-2836(77)80086-7

Rangaraj, V. M., Rambabu, K., Banat, F., & Mittal, V. (2021). Natural antioxidants-based edible active food packaging: An overview of current advancements. Food Bioscience, 43, 101251. https://doi.org/10.1016/j.fbio.2021.101251

Santoso, B., Manssur, A., & Malahayati, N. (2007). Karakteristik sifat fisik dan kimia edible film dari pati ganyong. Seminar Hasil-Hasil Penelitian Dosen Ilmu Pertanian Dalam Rangka Seminar Dan Rapat Tahunan (Semirata) Badan Kerjasama Perguruan Tinggi Negeri (BKS PTN) Wilayah Barat.

Schmid, M., Krimmel, B., Grupa, U., & Noller, K. (2014). Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films. Journal of Dairy Science, 97(9), 5315–5327. https://doi.org/10.3168/jds.2013-7852

Shoulders, M. D., & Raines, R. T. (2009). Collagen Structure and Stability. Annual Review of Biochemistry, 78(1), 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833

Soares, J. M., da Silva, P. F., Puton, B. M. S., Brustolin, A. P., Cansian, R. L., Dallago, R. M., & Valduga, E. (2016). Antimicrobial and antioxidant activity of liquid smoke and its potential application to bacon. Innovative Food Science & Emerging Technologies, 38, 189–197. https://doi.org/10.1016/j.ifset.2016.10.007

Sun, X. D., & Holley, R. A. (2011). Factors Influencing Gel Formation by Myofibrillar Proteins in Muscle Foods. Comprehensive Reviews in Food Science and Food Safety, 10(1), 33–51. https://doi.org/10.1111/j.1541-4337.2010.00137.x

Suwa, Y., Nam, K., Ozeki, K., Kimura, T., Kishida, A., & Masuzawa, T. (2016). Thermal denaturation behavior of collagen fibrils in wet and dry environment. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(3), 538–545. https://doi.org/10.1002/jbm.b.33418

Tamaela, P., & Lewerissa, S. (2007). Karakteristik edible film dari karagenan. Fakultas Perikanan Dan Ilmu Kelautan Universitas Patimura. Ambon.

Thirukumaran, R., Anu Priya, V. K., Krishnamoorthy, S., Ramakrishnan, P., Moses, J. A., & Anandharamakrishnan, C. (2022). Resource recovery from fish waste: Prospects and the usage of intensified extraction technologies. Chemosphere, 299, 134361. https://doi.org/10.1016/j.chemosphere.2022.134361

Wagey, B. T., Gunawan, W. B., Lasabuda, R., Mayulu, N., Al Mahira, M. F. N., Lailossa, D. G., Riswanda, F., Berta, E. L., Dewa, P. M., Yudisthira, D., Alisaputra, D., Arnamalia, A., Sabrina, N., Taslim, N. A., Hayes, C., & Nurkolis, F. (2023). New insight on antioxidants and anti-obesity properties of two Indonesian seagrass Thalassia hemprichii and Zostera marina: an integrated molecular docking simulation with in vitro study [version 1; peer review: awaiting peer review]. F1000Research, 12(727). https://doi.org/10.12688/f1000research.135221.1

Washio, T., Shintani, S. A., Higuchi, H., Sugiura, S., & Hisada, T. (2019). Effect of myofibril passive elastic properties on the mechanical communication between motor proteins on adjacent sarcomeres. Scientific Reports, 9(1), 9355. https://doi.org/10.1038/s41598-019-45772-1

Xin, X., Dell, K., Udugama, I. A., Young, B. R., & Baroutian, S. (2021). Transforming biomass pyrolysis technologies to produce liquid smoke food flavouring. Journal of Cleaner Production, 294, 125368. https://doi.org/10.1016/j.jclepro.2020.125368

Yang, H., Xu, S., Shen, L., Liu, W., & Li, G. (2016). Changes in aggregation behavior of collagen molecules in solution with varying concentrations of acetic acid. International Journal of Biological Macromolecules, 92, 581–586. https://doi.org/10.1016/j.ijbiomac.2016.07.080

Zhao, X., Xing, T., Xu, X., & Zhou, G. (2020). Influence of extreme alkaline pH induced unfolding and aggregation on PSE-like chicken protein edible film formation. Food Chemistry, 319, 126574. https://doi.org/10.1016/j.foodchem.2020.126574

Descargas

Publicado

22-04-2024

Cómo citar

MONTOLALU, R. I., DIEN, H. A., MENTANG, F., TAHER, N., & BERHIMPON, S. (2024). Properties and Bioactivity of Carrageenan, Myofibril, and Collagen-Based Smoked Edible Films. Nutrición Clínica Y Dietética Hospitalaria, 44(2). https://doi.org/10.12873/442montolalu