Association between visceral fat and components of metabolic syndrome in young Mexicans: a preliminary study

Autores/as

  • Oliver A. Sollano Trejo Universidad Autónoma de Baja California
  • Tatiana Romero García Universidad Autónoma de Baja California
  • Hiram Javier Jaramillo Ramírez Universidad Autónoma de Baja California
  • Marina Trejo Trejo Universidad Autónoma de Baja California
  • Ana Gabriela Leija Montoya Universidad Autónoma de Baja California
  • Gustavo Vázquez Jiménez Universidad Autónoma de Baja California

DOI:

https://doi.org/10.12873/452sollano

Palabras clave:

'Obesity', Visceral fat, 'Metabolic syndrome', Insulin Resistance, regulator of G-protein signaling-2

Resumen

Introduction: Obesity in young adults is a worldwide 
growing concern, increasing the risk of metabolic syndrome (MetS) and type 2 diabetes. This study explores whether healthy young individuals with a visceral fat area over 100 cm² show early metabolic alterations and investigates potential molecular mechanisms, including RGS2 expression, to better understand the onset of insulin resistance before 
clinical disease appears. 
Objectives: Since a wide percentage of people who de
velop metabolic syndrome come from being overweight or obese, it is important to identify whether a higher area of visceral fat could be a diagnostic strategy associated with insulin resistance and higher levels of RGS2 in the young population. 
Methods: Healthy male and female participants underwent routine medical evaluations and were grouped based on visceral fat area (VFA). Individuals with VFA < 50 cm² were classified as the Low VFA group, while those with VFA > 100 cm² comprised the High VFA group. Anthropometric assessments and serum biochemical analysis were performed to estimate 
insulin resistance, waist-to-height ratio, triglyceride-to-HDL ratio, and MetS severity score. Finally, mRNA was extracted to calculate the SERCA pump and RGS2 gene expression through qRT-PCR. 
Results: Young participants with High VFA exhibited 
MetS signs, higher HOMA-IR values, and elevated waist-to height and triglyceride-to-HDL ratios. The MetS z-score and a strong positive correlation between VFA and MetS severity (r = 0.8307, p < 0.0001) further support the relationship between central adiposity and metabolic dysfunction. Additionally, young participants with High VFA tended to have higher levels of RGS2 gene expression, targeting this protein as a potential therapeutic target.  
Conclusion: Our findings demonstrate the role of exacer
bated visceral adiposity in the metabolic risk in young people, despite their apparent healthy condition. 

 

Referencias

1. Instituto Nacional de Salud Pública [INSP]. Encuesta Nacional de Salud y Nutrición 2023 [Internet]. 2023 [cited 2025 Mar 26]. Available from: https://ensanut.insp.mx/encuestas/ensanutcontinua2023/doctos/informes/ensanut_23_112024.pdf

2. Vázquez-Jiménez JG, Casillas-Armenta OE, Oregel Cortéz MI, Romero-García T. Comprehending metabolic syndrome in children and adolescents: cardiometabolic outcomes in response to exercise. Retos. 2025;(62):122–31.

3. Kim JA, Choi CJ, Yum KS. Cut-off Values of Visceral Fat Area and Waist Circumference: Diagnostic Criteria for Abdominal Obesity in a Korean Population. J Korean Med Sci. 2006;21(6):1048.

4. The Examination Committee of Criter. New Criteria for `Obesity Disease’ in Japan. Circulation Journal. 2002;66(11):987–92.

5. Kelly AS, Kaizer AM, Bosch TA, Rudser KD, Ryder JR, Gross AC, et al. Reaching the Tipping Point: Identification of Thresholds at which Visceral Adipose Tissue May Steeply Increase in Youth. Obesity [Internet]. 2020 Jan 1;28(1):139–45. Available from: https://doi.org/10.1002/oby.22679

6. de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett [Internet]. 2008 Jan 9 [cited 2013 Jul 29];582(1):97–105. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2246086&tool=pmcentrez&rendertype=abstract

7. Ryu S, Frith E, Pedisic Z, Kang M, Loprinzi PD. Secular trends in the association between obesity and hypertension among adults in the United States, 1999–2014. Eur J Intern Med. 2019;

8. Vazquez-Jimenez JG, Corpus-Navarro MS, Rodriguez-Chavez JM, Jaramillo-Ramirez HJ, Hernandez-Aranda J, Galindo-Hernandez O, et al. The Increased Expression of Regulator of G-Protein Signaling 2 (RGS2) Inhibits Insulin-Induced Akt Phosphorylation and Is Associated with Uncontrolled Glycemia in Patients with Type 2 Diabetes. Metabolites. 2021 Feb 5;11(2).

9. Galindo-Hernandez O, Leija-Montoya AG, Romero-Garcia T, Vazquez-Jimenez JG. Palmitic acid decreases cell migration by increasing RGS2 expression and decreasing serca expression. Genet Mol Biol. 2021;44(1).

10. Arellano-Campos O, Gómez-Velasco D v, Bello-Chavolla OY, Cruz-Bautista I, Melgarejo-Hernandez MA, Muñoz-Hernandez L, et al. Development and validation of a predictive model for incident type 2 diabetes in middle-aged Mexican adults: the metabolic syndrome cohort. BMC Endocr Disord. 2019;19(1):41.

11. Li C, Ford ES, McGuire LC, Mokdad AH, Little RR, Reaven GM. Trends in hyperinsulinemia among nondiabetic adults in the U.S. Diabetes Care. 2006 Nov;29(11):2396–402.

12. Rosas Guzmán J, González Chávez A, Aschner P, Bastarrachea R. Epidemiología, Diagnóstico, Control, Prevención y Tratamiento del Síndrome Metabólico en Adultos. Asociación Latinoamericana de Diabetes [Internet]. 2010;18(1):25–44. Available from: http://www.revistaalad.com/pdfs/100125-44.pdf

13. Gurka MJ, Lilly CL, Oliver MN, DeBoer MD. An examination of sex and racial/ethnic differences in the metabolic syndrome among adults: A confirmatory factor analysis and a resulting continuous severity score. Metabolism [Internet]. 2014;63(2):218–25. Available from: https://www.sciencedirect.com/science/article/pii/S0026049513003387

14. Gurka MJ, DeBoer MD, Filipp SL, Khan JZ, Rapczak TJ, Braun ND, et al. MetS Calc: Metabolic Syndrome Severity Calculator. 2019.

15. Holden NS, Bell MJ, Rider CF, King EM, Gaunt DD, Leigh R, et al. β -2 Adrenoceptor agonist-induced RGS2 expression is a genomic mechanism of bronchoprotection that is enhanced by glucocorticoids. Proceedings of the National Academy of Sciences. 2011 Dec 6;108(49):19713–8.

16. Mahn K, Hirst SJ, Ying S, Holt MR, Lavender P, Ojo OO, et al. Diminished sarco/endoplasmic reticulum Ca 2 ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. Proc Natl Acad Sci U S A [Internet]. 2009 Jun 30;(6(26)):10775–80. Available from: www.pnas.orgcgidoi10.1073pnas.0902295106

17. Krawczyk K, Scheller L, Kim H, Fussenegger M. Rewiring of endogenous signaling pathways to genomic targets for therapeutic cell reprogramming. Nat Commun [Internet]. 2020;11(1):608. Available from: https://doi.org/10.1038/s41467-020-14397-8

18. Ortega Cortés R, Garciá Montalvo A, Trujillo X, Barrera De León C, López Beltrán A, Alicia DRM, et al. Relación entre índices de adiposidad visceral con componentes del síndrome metabólico en pacientes pediátricos con sobrepeso y obesidad. Nutricion Clinica y Dietetica Hospitalaria. 2017;37(3):117–23.

19. Vázquez-Jiménez JG, Roura-Guiberna A, Jiménez-Mena LR, Olivares-Reyes JA. Role of free fatty acids on insulin resistance. Gac Med Mex. 2017;153(7):773–83.

20. Miguel Murguía-Romero JRJFARMCSCSF and RVM. Insulin and HOMA-IR in Healthy Young Mexicans: A Cut-off Points Proposal. Intern Med Open Access. 2014;01(s6).

21. Lee AM, Gurka MJ, DeBoer MD. A metabolic syndrome severity score to estimate risk in adolescents and adults: Current evidence and future potential. Expert Rev Cardiovasc Ther. 2016 Apr 2;14(4):411–3.

22. Deboer MD, Gurka MJ. Clinical utility of metabolic syndrome severity scores: Considerations for practitioners. Vol. 10, Diabetes, Metabolic Syndrome and Obesity. Dove Medical Press Ltd; 2017. p. 65–72.

23. Summer SS, Jenkins T, Inge T, Deka R, Khoury JC. Association of diet quality, physical activity, and abdominal obesity with metabolic syndrome z-score in black and white adolescents in the US. Nutrition, Metabolism and Cardiovascular Diseases [Internet]. 2022;32(2):346–54. Available from: https://www.sciencedirect.com/science/article/pii/S0939475321005378

24. Galindo-Hernandez O, Leija-Montoya AG, Romero-Garcia T, Vazquez-Jimenez JG. Palmitic acid decreases cell migration by increasing RGS2 expression and decreasing SERCA expression. Genet Mol Biol. 2021;44(1).

25. Nunn C, Zhao P, Zou MX, Summers K, Guglielmo CG, Chidiac P. Resistance to age-related, normal body weight gain in RGS2 deficient mice. Cell Signal [Internet]. 2011 Aug [cited 2013 Jul 29];23(8):1375–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21447383

26. Sears DD, Hsiao A, Ofrecio JM, Chapman J, He W, Olefsky JM. Selective modulation of promoter recruitment and transcriptional activity of PPARgamma. Biochem Biophys Res Commun [Internet]. 2007 Dec 21 [cited 2013 Jul 29];364(3):515–21. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2585742&tool=pmcentrez&rendertype=abstract

Descargas

Publicado

28-07-2025

Cómo citar

[1]
2025. Association between visceral fat and components of metabolic syndrome in young Mexicans: a preliminary study. Nutrición Clínica y Dietética Hospitalaria. 45, 2 (Jul. 2025). DOI:https://doi.org/10.12873/452sollano.

Artículos similares

1-10 de 361

También puede Iniciar una búsqueda de similitud avanzada para este artículo.