Effect of Coturnix japonica (quail) egg yolk in ethanol damage-induced mice

Authors

DOI:

https://doi.org/10.12873/434gallo

Keywords:

Nervous tissue, Egg yolk, Glutathione, Protein, Mice, Quail

Abstract

Introduction: The high prevalence of neurodegenerative diseases in the older adult population requires research focused on functional foods with regulatory properties on redox state and with antioxidant potential. Quail egg yolk is a food with a great diversity of antioxidant compounds with neuroprotective activity. Objective: To evaluate the effect of Coturnix japonica (quail) egg yolk administration on the nervous tissue induced by ethanol damage in mice. Methodology: 35 mice received the following treatment via orogastric for five days: groups I and II water (10 mL/kg), group III egg yolk (5 mL/kg), group IV egg yolk (10 mL/kg) and group V egg yolk (15 mL/kg). On the fifth day, 99% ethanol was administered subcutaneously (5 g/kg) to groups II-V. After four hours, the mice were decapitated to obtain the brain and cerebellum and subsequently perform biochemical tests and histopathological analysis. Results: Group IV presented neuronal proliferation phenomenon and Purkinje cells pluristratification in brain and cerebellum respectively, additionally presented a better GSH/GSSG ratio (p<0.05) with respect to group II, there was no statistically significant difference between protein levels or protein sulfhydryl groups in any of the groups. Conclusions: Coturnix japonica egg yolk administration resulted in better preservation of the cytoarchitecture of the brain and cerebellum, as well as increased GSH profile.

Author Biographies

Mariano GALLO RUELAS, Red Asistencial Piura, EsSalud, Piura, Perú

Mariano Gallo Ruelas. Licenciado en Nutrición, investigador RENACYT con interés en la síntesis sistemática de evidencia en Nutrición clínica y generación de estudios en Nutrición experimental.

Oscar Gustavo HUAMÁN-GUTIERREZ, Instituto de Investigación en Bioquímica y Nutrición, Universidad Nacional Mayor de San Marcos, Lima, Perú

Bachelor's Degree in Nutrition, Master's Degree in Biochemistry. He is a graduate of the Doctorate in Health Science. He has been teaching since 2002 at the Faculty of Medicine of the UNMSM at undergraduate and graduate level. Researcher registered in REGINA in the area of Medicinal Plants and functional foods. Thesis advisor at undergraduate and graduate level. He has published in indexed journals.

References

JPND - Research. What is neurodegenerative disease? [Internet]. [cited 2022 May 3]; Available in: https://www.neurodegenerationresearch.eu/what/

Emmady PD, Schoo C, Tadi P. Major Neurocognitive Disorder (Dementia). StatPearls [Internet] 2022 [cited 2023 May 7]; Available in: https://www.ncbi.nlm.nih.gov/books/NBK557444/

Li X, Feng X, Sun X, Hou N, Han F, Liu Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front Aging Neurosci 2022;14:1120. DOI: 10.3389/FNAGI.2022.937486/BIBTEX

Blouin C, Tirado E, Mamani F. La situación de la población adulta mayor en el Perú: Camino a una nueva política. 2018. Available in: https://cdn01.pucp.education/idehpucp/wp-content/uploads/2018/11/23160106/publicacion-virtual-pam.pdf

INEI. Estado de la población peruana 2020 [Internet]. Instituto Nacional de Estadística e Informática ; 2021 [cited 2023 May 7]. Available in: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1743/Libro.pdf

Carvalho JCT, Fernandes CP, Daleprane JB, Alves MS, Stien D, Dhammika Nanayakkara NP. Role of natural antioxidants from functional foods in neurodegenerative and metabolic disorders. Oxid Med Cell Longev 2018;2018:2–4. DOI: 10.1155/2018/1459753

Shieh P, Hsu SS, Liang WZ. Mechanisms underlying protective effects of vitamin E against mycotoxin deoxynivalenol-induced oxidative stress and its related cytotoxicity in primary human brain endothelial cells. Environ Toxicol 2021;36(7):1375–88. DOI: 10.1002/tox.23133

Tunsaringkarn T, Tungjaroenchai W, Siriwong W. Nutrient benefits of quail (Coturnix coturnix japonica) eggs. International Journal of Scientific and Research Publications 2013;3(5):1–8. Available in: https://www.ijsrp.org/research-paper-0513/ijsrp-p1729.pdf

Oladipo GO, Ibukun EO. BioActivities of Coturnix japonica (quail) egg yolk and albumen against physiological stress. Food Sci Nutr 2017;5(2):334–43. DOI: 10.1002/fsn3.397

Oladipo GO, Oladipo MC, Ibukun EO, Salawu SO. Quail (Coturnix japonica) egg attenuated 2-butoxyethanol-induced enzymatic dysregulation, disseminated thrombosis and hemolytic impairment in female wistar rats. J Ethnopharmacol [Internet] 2020;113508. Available in: https://pubmed.ncbi.nlm.nih.gov/33169693 DOI: 10.1016/j.jep.2020.113508

Hernández-Sampieri, R. & Mendoza, C (2018). Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta, Ciudad de México, México: Editorial Mc Graw Hill Education, Año de edición: 2018, ISBN: 978-1-4562-6096-5, 714 p.

Ali T, Rehman SU, Shah FA, Kim MO. Acute dose of melatonin via Nrf2 dependently prevents acute ethanol-induced neurotoxicity in the developing rodent brain. J Neuroinflammation 2018;15(1):1–19. DOI: 10.1186/s12974-018-1157-x

Gartner LP. Texto de histología - 4th Edition [Internet]. 2017 [cited 2020 Nov 24];150–71. Available in: https://www.elsevier.com/books/texto-de-histologia/gartner/978-84-9113-118-2

Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 1968;25:192–205. DOI: https://doi.org/10.1016/0003-2697(68)90092-4

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82(1):70–7. DOI: https://doi.org/10.1016/0003-9861(59)90090-6

Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall RJ. Protein Measurement with the Folin Phenol Reagent. J Biol Chem 1951;193:265–275. Available in: https://pubmed.ncbi.nlm.nih.gov/14907713/

Silvia Suárez Cunza. Actividad captadora de radicales libres y efecto antioxidante de metabolitos secundarios del extracto acuoso de Allium Sativum variedad Huaralino [Internet]. Tesis doctoral2014;Materiales. Available in: https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/3963/Suarez_cs%282%29.pdf?sequence=1&isAllowed=y

Congreso de la República. Ley de protección y bienestar animal N° 30407 [Internet]. El Peruano 2016 [cited 2023 May 7]; Available in: https://busquedas.elperuano.pe/normaslegales/ley-de-proteccion-y-bienestar-animal-ley-n-30407-1331474-1/

Feltham BA, Louis XL, Eskin MNA, Suh M. Docosahexaenoic Acid: Outlining the Therapeutic Nutrient Potential to Combat the Prenatal Alcohol-Induced Insults on Brain Development. Advances in Nutrition 2020;11(3):724–35. DOI: 10.1093/ADVANCES/NMZ135

Evbuomwan SA, Omotosho OE, Mgbojikwe I. Roles and Mechanisms of Docosahexaenoic Acid (DHA) in Neurodevelopment, Neuronal Functions, Learning and Memory. 2022; Available in: http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.psjd-945ecc8d-00df-4861-ade0-bea10f1a5df7

Ramírez D, Saba J, Turati J, Carniglia L, Imsen M, Mohn C, et al. NDP-MSH reduces oxidative damage induced by palmitic acid in primary astrocytes. J Neuroendocrinol 2019;31(2). DOI: 10.1111/jne.12673

Qin L, Crews FT. NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration [Internet]. 2012. Available in: http://www.jneuroinflammation.com/content/9/1/5

Gęgotek A, Skrzydlewska E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants 2022, Vol 11, Page 1993 [Internet] 2022 [cited 2023 May 7];11(10):1993. Available in: https://www.mdpi.com/2076-3921/11/10/1993/htm DOI: 10.3390/ANTIOX11101993

Iskusnykh IY, Zakharova AA, Pathak D. Glutathione in Brain Disorders and Aging. Molecules [Internet] 2022 [cited 2023 May 7];27(1). Available in: https://www.mdpi.com/1420-3049/27/1/324 DOI: 10.3390/molecules27010324

Ogata FT, Branco V, Vale FF, Coppo L. Glutaredoxin: Discovery, redox defense and much more. Redox Biol [Internet] 2021;43(November 2020):101975. DOI: 10.1016/j.redox.2021.101975

Hu Y, Zhang X, Lian F, Yang J, Xu X. Combination of Lutein and DHA Alleviate H 2 O 2 Induced Cytotoxicity in PC12 Cells by Regulating the MAPK Pathway. 2021. Available in: https://pubmed.ncbi.nlm.nih.gov/34470998/ DOI: 10.3177/jnsv.67.234

Gunal MY, Sakul AA, Caglayan AB, Erten F, Kursun OED, Kilic E, et al. Protective Effect of Lutein/Zeaxanthin Isomers in Traumatic Brain Injury in Mice. Neurotox Res 2021;39(5):1543–50. DOI: 10.1007/s12640-021-00385-3

Liu ZH, Chen NY, Tu PH, Wu C Te, Chiu SC, Huang YC, et al. DHA Attenuates Cerebral Edema Following Traumatic Brain Injury via the Reduction in Blood–Brain Barrier Permeability. International Journal of Molecular Sciences 2020, Vol 21, Page 6291 [Internet] 2020 [cited 2023 May 7];21(17):6291. Available in: https://www.mdpi.com/1422-0067/21/17/6291/htm DOI: 10.3390/IJMS21176291

Downloads

Published

2023-10-02

How to Cite

GALLO RUELAS, M., & HUAMÁN-GUTIERREZ, O. G. (2023). Effect of Coturnix japonica (quail) egg yolk in ethanol damage-induced mice. Nutrición Clínica Y Dietética Hospitalaria, 43(4). https://doi.org/10.12873/434gallo

Issue

Section

Research articles

Categories

Most read articles by the same author(s)