Recientes avances en la comprensión del eje intestino-sistema endocrino

Autores

  • Vicente Martinez Cardenas Children’s Medical Center. Lake city. Florida. USA. https://orcid.org/0000-0002-6273-2501
  • Vivian R. Mena Miranda Hospital pediátrico Centro. La Habana, Cuba.

DOI:

https://doi.org/10.12873/

Palavras-chave:

microbiota intestinal, eje intestino-endocrino, SCFAs, metabolismo, hormonas, disbiosis

Resumo

Introducción: La microbiota intestinal ha emergido como un actor clave en la regulación endocrina sistémica. Su interacción con el sistema endocrino da lugar al llamado eje intestino-endocrino, que influye en la homeostasis metabólica, la función tiroidea, la secreción de insulina y la regulación del eje hipotálamo-hipófisis-adrenal.
Objetivo: Explorar los avances recientes en el entendimiento del eje intestino-sistema endocrino y sus implicaciones clínicas. Método: Revisión narrativa de la literatura científica publicada entre 2019 y 2025 en bases de datos como PubMed, Scopus y Web of Science. Se analizaron artículos originales, revisiones sistemáticas y ensayos clínicos sobre microbiota y regulación endocrina. Resultados: Se identificaron mecanismos clave de comunicación entre la microbiota y el sistema endocrino, incluyendo metabolitos como ácidos grasos de cadena corta (SCFAs), derivados del triptófano y endotoxinas que modulan la secreción hormonal. Se observó influencia de la microbiota en la resistencia a la insulina, disfunción tiroidea, obesidad y eje HHA. Conclusiones: El eje intestino-endocrino representa una nueva dimensión en la fisiopatología de trastornos metabólicos y endocrinos, abriendo puertas a intervenciones terapéuticas basadas en la modulación de la microbiota.

Referências

1.Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015 Feb 2;26:26191. doi:10.3402/mehd.v26.26191. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25651997/

2. Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020 Jan;20(1):40–54. doi:10.1038/s41577-019-0198-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31388093/

3. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014 Aug;28(8):1221–1238. doi:10.1210/me.2014-1108. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24892638/

4. Wu J, Wang K, Wang X, Pang Y, Jiang C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell. 2021 May;12(5):360–373. doi:10.1007/s13238-020-00814-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33346905/

5. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016 Jul 14;165(6):1332–1345. doi:10.1016/j.cell.2016.05.041. Disponible en: https://www.sochob.cl/pdf/tratamiento_obesidad/From%20dietary%20fiber%20to%20host%20physiology-%20short-chain%20fatty%20acids%20as%20key%20bacterial%20metabolites.pdf

6. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018 Jun 13;23(6):716–724. doi:10.1016/j.chom.2018.05.003. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29902437/

7. Mohammad S, Thiemermann C. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front Immunol. 2021 Jan 10;11:594150. doi:10.3389/fimmu.2020.594150. Disponible en: https://www.frontiersin.org/articles/10.3389/fimmu.2020.594150/full

8. Sun C, Liu Q, Ye X, Li R, Meng M, Han X. The role of probiotics in managing glucose homeostasis in adults with prediabetes: a systematic review and meta-analysis. J Diabetes Res. 2024 Mar 18;2024:5996218. doi:10.1155/2024/5996218. Disponible en: https://pubmed.ncbi.nlm.nih.gov/38529045/

9. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013 Sep;341(6150):1079–1083. doi:10.1126/science.1241214. Disponible en: https://www.science.org/doi/10.1126/science.1241214

10. Sawicka-Gutaj N, Gruszczyński D, Zawalna N, Nijakowski K, Muller I, Karpiński T, Salvi M, Ruchała M. Microbiota alterations in patients with autoimmune thyroid diseases: a systematic review. Int J Mol Sci. 2022 Nov 3;23(21):13450. doi:10.3390/ijms232113450. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36362236/

11. Reemst K, Tims S, Yam K, Mischke M, Knol J, Brul S, Schipper L, Korosi A. The role of the gut microbiota in the effects of early-life stress and dietary fatty acids on later-life central and metabolic outcomes in mice. mSystems. 2022;7(3):e00180-22. doi:10.1128/msystems.00180-22. Disponible en: https://doi.org/10.1128/msystems.00180-22

12. Melville NA. Hypothyroidism linked to gut microbiome disturbances [Internet]. Medscape Medical News; 2025 Jul 22 [cited 2025 Jul 19]. Disponible en: https://www.medscape.com/viewarticle/hypothyroidism-linked-gut-microbiome-disturbances-2025a1000je6?ecd=wnl_tp10_daily_250725_MSCPEDIT_etid7594210&uac=227104BY&impID=7594210

13. Chao J, Coleman RA, Keating DJ, Martin AM. Gut Microbiome Regulation of Gut Hormone Secretion. Endocrinology. 2025;166(4):bqaf004. doi: 10.1210/endocr/bqaf004. Disponible en: https://academic.oup.com/endo/article/166/4/bqaf004/8046870

14. Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio. 2024;15(1):e02032-23. doi: 10.1128/mbio.02032-23. Disponible en: https://journals.asm.org/doi/10.1128/mbio.02032-23

15. Loh JS, Mak WQ, Tan LK, et al. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther. 2024;9:37. doi: 10.1038/s41392-024-01743-1. Disponible en: https://www.nature.com/articles/s41392-024-01743-1

16. Sittipo P, Choi J, Lee S, et al. The function of gut microbiota in immune-related neurological disorders: a review. J Neuroinflammation. 2022;19:154. doi: 10.1186/s12974-022-02510-1. Disponible en: https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-022-02510-1

17. Meyer RK, Duca FA. Endocrine regulation of metabolic homeostasis via the intestine and gut microbiome. J Endocrinol. 2023 Jul 11;258(2):e230019. doi:10.1530/JOE-23-0019. Disponible en: https://joe.bioscientifica.com/view/journals/joe/258/2/JOE-23-0019.xml

18. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020 Jan;51:102590. doi:10.1016/j.ebiom.2019.11.051. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31901868/

19. Arora T, Tremaroli V. Therapeutic potential of butyrate for treatment of type 2 diabetes. Front Endocrinol. 2021 Nov 22;12:761834. doi:10.3389/fendo.2021.761834. Disponible en: https://www.frontiersin.org/articles/10.3389/fendo.2021.761834/full

20. Yang F, Li J, Wei L, Qin S, Shi Q, Lu S, Chu S. The characteristics of intestinal microbiota in patients with type 2 diabetes and the correlation with the percentage of T-helper cells. Front Microbiol. 2024 Sep 27;15:1443743. doi:10.3389/fmicb.2024.1443743. Disponible en: https://pubmed.ncbi.nlm.nih.gov/39397795/

21. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018 Oct;562(7728):589–594. doi:10.1038/s41586-018-0620-2. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30356183/

22. Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, Hämäläinen AM, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015 Feb 11;17(2):260–273. doi:10.1016/j.chom.2015.01.001. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25662751/

23. Xu J, Lian F, Zhao L, Zhao Y, Chen X, Zhang X, et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J. 2015 Mar;9(3):552–562. doi:10.1038/ismej.2014.177. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25279787/

24. Liu F, Li P, Chen M, Luo Y, Prabhakar M, Zheng H, et al. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase Bifidobacterium but reduce butyrate-producing bacteria with adverse glycemic metabolism in healthy young population. Sci Rep. 2017 Sep 18;7(1):11789. doi:10.1038/s41598-017-10722-2. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28924143/

25. Mocanu V, Zhang Z, Deehan EC, Kao DH, Hotte N, Karmali S, et al. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat Med. 2021 Jul;27(7):1272–1279. doi:10.1038/s41591-021-01399-2. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34226737/

26. Zhao F, Feng J, Li J, Zhao L, Liu Y, Chen H, et al. Alterations of the Gut Microbiota in Hashimoto's Thyroiditis Patients. Front Immunol. 2021 Jul 12;12:579140. doi: 10.3389/fimmu.2021.579140.

27. Zhao L, Shen X, Tang J, Huang Y, Song X, Liu Y, et al. Gut microbiota and thyroid autoimmunity: a systematic review. Front Endocrinol (Lausanne). 2021 Nov 25;12:774362. doi: 10.3389/fendo.2021.774362.

28. Gao R, Xie M, Jin H, Liu L, Wang W. Unraveling the gut-thyroid axis in Hashimoto's thyroiditis for improved patient care. J Med Sci Grad Res [Internet]. 2024 [cited 2025 Jul 27]. Available from: https://jmsgr.tamhsc.edu/unraveling-the-gut-thyroid-axis-in-hashimotos-thyroiditis-for-improved-patient-care/

29. Giammanco M, Bonfiglio VME, Giammanco MM, Carini F. The role of selenium in autoimmune thyroiditis. J Biol Res (Boll Soc Ital Biol Sper). 2024 Mar;95(1):12050. doi:10.4081/jbr.2024.12050. Disponible en: https://www.researchgate.net/publication/379176582_The_role_of_selenium_in_autoimmune_thyroiditis

30. Yan K, Sun X, Fan C, Wang X, Yu H. Unveiling the role of gut microbiota and metabolites in autoimmune thyroid diseases: emerging perspectives. Int J Mol Sci. 2024 Oct 10;25(20):10918. doi:10.3390/ijms252010918. Disponible en: https://pubmed.ncbi.nlm.nih.gov/39456701/

31. Fang L, Ning J. Recent advances in gut microbiota and thyroid disease: pathogenesis and therapeutics in autoimmune, neoplastic, and nodular conditions. Front Cell Infect Microbiol. 2024 Dec 24;14:1465928. doi:10.3389/fcimb.2024.1465928. Disponible en: https://pubmed.ncbi.nlm.nih.gov/39776440/

32. Shu Q, Kang C, Li J, Hou Z, Xiong M, Wang X, Peng H. Effect of probiotics or prebiotics on thyroid function: A meta-analysis of eight randomized controlled trials. PLoS One. 2024 Jan 11;19(1):e0296733. doi: 10.1371/journal.pone.0296733. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296733

33. Melville NA. Hypothyroidism linked to gut microbiome disturbances [Internet]. Medscape Medical News; 2025 Jul 22 [cited 2025 Jul 27]. Available from: https://www.medscape.com/viewarticle/hypothyroidism-linked-gut-microbiome-disturbances-2025a1000je6

34. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y. Postnatal microbial colonization programs the hypothalamic pituitary adrenal system for stress response in mice. J Physiol. 2004 Jul 1;558(Pt 1):263–275. doi: 10.1113/jphysiol.2004.063388. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15133062/(pubmed.ncbi.nlm.nih.gov)

35. Dinan TG, Cryan JF. The Microbiome Gut Brain Axis in Health and Disease. Gastroenterol Clin North Am. 2017 Mar;46(1):77–89. doi:10.1016/j.gtc.2016.09.007. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28164854/(pubmed.ncbi.nlm.nih.gov)

36. Foster JA, McVey Neufeld KA. Gut brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013 May;36(5):305–12. doi: 10.1016/j.tins.2013.01.005. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23384445/(pubmed.ncbi.nlm.nih.gov)

37. Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF. The microbiome: stress, health and disease. Mamm Genome.2014 Feb;25(1–2):49–74. doi:10.1007/s00335 013 9488 5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24281320/(pubmed.ncbi.nlm.nih.gov)

38. Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic pituitary adrenal axis. Front Endocrinol (Lausanne). 2023 Jun 18;14:1130689. doi:10.3389/fendo.2023.1130689. Disponible en: https://www.frontiersin.org/articles/10.3389/fendo.2023.1130689 (pubmed.ncbi.nlm.nih.gov)

39. Moya Pérez A, Neef A, Sanz Y. Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity Associated Inflammation by Restoring the Lymphocyte Macrophage Balance and Gut Microbiota Structure in High Fat Diet Fed Mice. PLoS One. 2015 Jul 10;10(7). doi:10.1371/journal.pone.0126976. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126976 (journals.plos.org)

Publicado

2025-11-25

Como Citar

[1]
2025. Recientes avances en la comprensión del eje intestino-sistema endocrino. Nutrición Clínica y Dietética Hospitalaria. 45, 4 (nov. 2025). DOI:https://doi.org/10.12873/.

Artigos Semelhantes

1-10 de 35

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.