Desenvolvimento e validação de uma ecuación para prever o gasto energético total em um grupo de adultos mexicanos.
DOI:
https://doi.org/10.12873/413ortizPalavras-chave:
total energy expenditure, adults, physical activity, resting energy expenditure, indirect calorimetry, heart rateResumo
O objetivo do estudo foi desenvolver e validar uma equação aplicável em adultos mexicanos para prever o gasto energético total (TEG) com base em medidas antropométricas e questionários de atividade física. Para isso, foi realizado um estudo de validação com uma amostra de adultos mexicanos (n = 115, 37% homens) que foi dividida aleatoriamente em duas subamostras para desenvolver e validar novas equações para estimar o GET. Como método de referência, o GET foi medido por calorimetria indireta e monitoramento da frequência cardíaca por pelo menos três dias. Foram estimados modelos de regressão linear múltipla em que os preditores do GET foram idade, sexo, massa gorda e não gorda, peso corporal e nível de atividade física (NAF), que foi avaliado por meio de duas questões. A equação desenvolvida é a seguinte: GET (kcal / d) = 1331,712 - (686,344 x sexo, homens: 1, mulheres: 2) + (18,051 x peso corporal, kg) - (16,020 x idade, anos) + (894,007 x NAF). A precisão da equação foi modesta nas subamostras de desenvolvimento (R2 = 54,4, erro padrão = 511,3) e validação (R2 = 59,2, erro padrão = 372,8). No entanto, essa equação foi mais precisa do que os métodos fatoriais (FAO / OMS ou equivalentes metabólicos de Ainsworth) e as equações empíricas para estimar o GET. Assim, uma equação simples foi desenvolvida para estimar o GTE de adultos mexicanos, que pode ser usada como um guia geral para fornecer orientação nutricional.Referências
American College of Cardiology/American Heart Association Task Force on Practice Guidelines OEP, 2013. Executive summary: Guidelines (2013) for the management of overweight and obesity in adults. Obesity. 2014;22 Suppl 2:S5-39.
Academy of Nutrition and Dietetics (2015) Adult Weight Management: Executive Summary of Recommendations (2014). [Available from: https://www.andeal.org/vault/pq130.pdf]
Pinheiro Volp AC, Esteves de Oliveira FC, Duarte Moreira Alves R, Esteves EA, Bressan J. Energy expenditure: components and evaluation methods. Nutr Hosp. 2011;26(3):430-40.
Chung N, Park MY, Kim J, Park HY, Hwang H, Lee CH, et al. Non-exercise activity thermogenesis (NEAT): a component of total daily energy expenditure. J Exerc Nutr & Biochemistry. 2018;22(2):23-30.
Melby C, Paris HL, Foright R. Chapter 10. Energy balance. In: Karpinski C, Rosenbloom CA, eds. Sports nutrition. A handbook for professionals. Sports, cardiovascular, and wellness nutrition dietetics practice group. Chicago, IL: Academy of Nutrition and Dietetics; 2017:191-217.
Redondo RB. Gasto energético en reposo. Métodos de evaluación y aplicaciones. Rev Esp Nutr Comunitaria. 2015;21(1):243-251.
Hasson RE, Howe CA, Jones BL, Freedson PS. Accuracy of four resting metabolic rate prediction equations: effects of sex, body mass index, age, and race/ethnicity. J Sci Med Sport. 2011;14(4):344-351.
Orozco-Ruiz X, Pichardo`-Ontiveros E, Tovar AR, Torres N, Medina-Vera I, Prinelli F, et al. Development and validation of new predictive equation for resting energy expenditure in adults with overweight and obesity. Clin Nutr. 2018;37(6 Pt A):2198-205.
Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241-247.
Food and Agriculture Organization. Human energy requirements. Rome, Italy: FAO/WHO/UNU; 2001.
Institute of Medicine. Dietary Reference Intakes. Washington, DC: The National Academies Press; 2005.
Harris JA, Benedict FG. A biometric study of human basal metabolism. PNAS. 1918;4(12):370-373.
Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575-1581.
Haneda M, Noda M, Origasa H, Noto H, Yabe D, Fujita Y, et al. Japanese Clinical Practice Guideline for Diabetes 2016. J Diabetes Investig. 2018.
Algina J, Moulder BC, Moser BK. Sample Size Requirements for Accurate Estimation of Squared Semi-Partial Correlation Coefficients. Multivariate Behav Res. 2002;37(1):37-57.
Johansson G, Westerterp KR. Assessment of the physical activity level with two questions: validation with doubly labeled water. Int J Obes. 2005. 2008;32(6):1031-1033.
Compher C, Frankenfield D, Keim N, Roth-Yousey L. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881-903.
Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1-2):1-9.
Livingstone MB, Prentice AM, Coward WA, et al. Simultaneous measurement of free-living energy expenditure by the doubly labeled water method and heart-rate monitoring. Am J Clin Nutr. 1990;52(1):59-65.
Fletcher GF, Ades PA, Kligfield P, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128(8):873-934.
Myers J, Forman DE, Balady GJ, et al. Supervision of exercise testing by nonphysicians: a scientific statement from the American Heart Association. Circulation. 2014;130(12):1014-1027.
Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153-156.
Lohmann TG, Roche AF, Martorell R. Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics Books; 1988.
Habicht J. Estandarización de métodos epidemiológicos cuantitativos sobre el terreno. Bol Of Sanit Panam. 1974;75(5):375-384.
Heymsfield SB, Harp JB, Rowell PN, Nguyen AM, Pietrobelli A. How much may I eat? Calorie estimates based upon energy expenditure prediction equations. Obes Rev. 2006;7(4):361-370.
Ocobock C. The allocation and interaction model: A new model for predicting total energy expenditure of highly active humans in natural environments. Am J Human Biol. 2016;28(3):372-380.
Leonard WR, Katzmarzyk PT, Stephen MA, Ross AG. Comparison of the heart rate-monitoring and factorial methods: assessment of energy expenditure in highland and coastal Ecuadoreans. Am J Clin Nutr. 1995;61(5):1146-1152.
Alfonzo-Gonzalez G, Doucet E, Almeras N, Bouchard C, Tremblay A. Estimation of daily energy needs with the FAO/WHO/UNU 1985 procedures in adults: comparison to whole-body indirect calorimetry measurements. Eur J Clin Nutr. 2004;58(8):1125-1131.
Rennie KL, Hennings SJ, Mitchell J, Wareham NJ. Estimating energy expenditure by heart-rate monitoring without individual calibration. Med Sci Sports Exerc. 2001;33(6):939-945.
Ceesay SM, Prentice AM, Day KC, et al. The use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetry. Br J Nutr. 1989;61(2):175-186.
Downloads
Publicado
Como Citar
Licença
Copyright (c) 2021 Nutrición Clínica y Dietética Hospitalaria
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)