Body composition, body mass index, and accelerated biological aging  in women beneficiaries of social programs in the southern Andes of Peru

Authors

  • Rocio Cahuana Lipa Universidad Nacional de Cañete https://orcid.org/0000-0002-7671-5585
  • Julio César Machaca Mamani Universidad Nacional de Cañete
  • Edwar Torres Cruz UNIVERSIDAD PERUANA CAYETANO HEREDIA
  • Yuliza Francesca Anchari Oblitas Universidad tecnológica de los Andes
  • Nancy Berduzco Torres Universidad nacional de san Antonio Abad
  • Angela Fiorella Sota Cano Universidad tecnológica de los Andes

DOI:

https://doi.org/10.12873/

Keywords:

Composición corporal, índice de masa corporal y envejecimiento biológico

Abstract

Introduction: Accelerated biological aging represents a 
key indicator of the risk of chronic diseases and functional decline. 
Objective: To compare body composition, body mass in
dex (BMI), and accelerated biological aging in women who are beneficiaries of the JUNTOS and Vaso de Leche social programs.  
Methods: Quantitative, cross-sectional, and comparative study was conducted. The sample consisted of 387 clinically stable adult women treated in the nutrition service of the San Jerónimo Health Center using electrical bioimpedance and anthropometry. Data were obtained through documentary review. For statistical analysis, the Shapiro-Wilk normality test was applied, followed by an analysis of variance (ANOVA) to compare groups according to social program. The level of 
statistical significance was set at p < 0.05. Processing was performed in Rstudio and Python. 
Results: The mean body fat was high, 41.2 ± 7.83%, 
exceeding the normal range for women (20-33%), indicating generalized adiposity. The mean muscle mass was low, 25.13 ± 4.05%, below the optimal threshold (>28%), suggesting possible functional sarcopenia in adult women; the mean chronological age was 37.97 ± 11.16 years (range 18-78), and the mean biological age was older, 52.16 ± 12.93 years (range 34-80), reflecting accelerated aging. The mean BMI was 28.39 ± 4.56 kg/m², placing the group as overweight. A significant positive relationship was found between BMI and 
body fat percentage, with the highest concentrations being those between 24-34 kg/m² and 35%-50% fat, indicating overweight and obesity. 79.6% of participants presented accelerated aging, with a biological age much greater than chronological age. 14.7% presented expected aging, and 5.7% presented healthy aging, with a younger biological age. 
Conclusions: The extremely low p-value (p < 0.001) 
indicates significant differences in body fat between aging groups, confirming the association between excess fat and physiological decline, and validating body composition as a determinant of accelerated biological aging.

References

1. Fisher TA, Fisher TA, Bobreshova SS, et al. Assessment of biological age and body composition in people involved in hardening. Vopr Kurortol Fizioter Lech Fiz Kult [homepage on the Internet] 2022;Available from: https://pubmed.ncbi.nlm.nih.gov/35700374

2. Tyatenkova NN, Uvarova YE, Bragina AM. Body Composition In Persons Of The First Period Of Adulthood With Different Aging Rates. Siberian Journal of Life Sciences and Agriculture 2022;14(1):198–216.

3. Lebiedowska A, Hartman-Petrycka M, Błońska-Fajfrowska B. How reliable is BMI? Bioimpedance analysis of body composition in underweight, normal weight, overweight, and obese women. Ir J Med Sci 2021;190(3):993–998.

4. Overweight and Obesity - Obesity and Women’s Health | NHLBI, NIH [Homepage on the Internet]. [cited 2025 Jul 6];Available from: https://www.nhlbi.nih.gov/health/overweight-and-obesity/women

5. Mihajlova S V, Khrycheva T V. Interrelationship of Component Composition of the Body with Biological Age According to the “Bio-Age” Scale. Физиология человека [homepage on the Internet] 2024;Available from: https://doi.org/10.31857/s0131164624010106

6. Kishman EE, Kishman EE, Breneman CB, et al. Associations between sleep and body composition in older women and the potential role of physical function. Sleep Biol Rhythms [homepage on the Internet] 2022;Available from: https://pubmed.ncbi.nlm.nih.gov/37193097

7. West J, West J, Romu T, et al. Precision of MRI-based body composition measurements of postmenopausal women. PLoS One [homepage on the Internet] 2018;Available from: https://pubmed.ncbi.nlm.nih.gov/29415060

8. Nava‐González EJ, Nava-Gonzalez EJ, Cerda‐Flores RM, et al. Densidad mineral ósea y su asociación con la composición corporal y biomarcadores metabólicos del eje insulino-glucosa, hueso y tejido adiposo en mujeres. Gac Med Mex [homepage on the Internet] 2015;Available from: https://pubmed.ncbi.nlm.nih.gov/26581531

9. Bae CY, Bae C-Y, Bae CY, et al. A model for estimating body shape biological age based on clinical parameters associated with body composition. Clin Interv Aging [homepage on the Internet] 2012;Available from: https://pubmed.ncbi.nlm.nih.gov/23293513

10. Staatz CB, Staatz CB, Hardy R, Hardy R. Number of children and body composition in later life among men and women: Results from a British birth cohort study. bioRxiv [homepage on the Internet] 2018;Available from: https://pubmed.ncbi.nlm.nih.gov/31141503

11. García BLV, Vargas FEH, Loyo CER, Celedonio FGM. Comparación y correlación del índice de masa corporal y bioimpedancia en mujeres adultas. Ciencia Latina Revista Científica Multidisciplinar [homepage on the Internet] 2025;Available from: https://doi.org/10.37811/cl_rcm.v9i1.16237

12. Ayala JV, Ayala JV, Yánez C, Yánez C. Entrenamiento de fuerza isoinercial sobre el índice de masa corporal, grasa visceral y masa magra en mujeres adultas mayores. Germina [homepage on the Internet] 2022;Available from: https://doi.org/10.52948/germina.v4i4.500

13. Balogun S, Balogun S, Aitken D, et al. Linear and Nonlinear Associations Between Physical Activity, Body Composition, and Multimorbidity Over 10 Years Among Community-Dwelling Older Adults. Journals of Gerontology Series A-biological Sciences and Medical Sciences [homepage on the Internet] 2021;Available from: https://pubmed.ncbi.nlm.nih.gov/33780541

14. Avila KYL, Guzmán-Saldaña RME, Arrieta-Villarreal JL, Platas-Acevedo S. Autopercepción del Índice de Masa Corporal y Satisfacción con la Imagen Corporal en Hombres y Mujeres Estudiantes de Secundaria. Revista Veritas de Difusão Científica [homepage on the Internet] 2025;Available from: https://doi.org/10.61616/rvdc.v6i1.528

15. Lebiedowska A, Lebiedowska A, Hartman-Petrycka M, Hartman-Petrycka M, Błońska‐Fajfrowska B, Błońska-Fajfrowska B. How reliable is BMI? Bioimpedance analysis of body composition in underweight, normal weight, overweight, and obese women. Ir J Med Sci [homepage on the Internet] 2020;Available from: https://pubmed.ncbi.nlm.nih.gov/33083960

16. Sanchez-Samaniego G, Mäusezahl D, Carcamo C, Probst-Hensch N, Verastegui H, Hartinger SM. Metabolic syndrome in rural Peruvian adults living at high altitudes using different cookstoves. PLoS One 2022;17(2 February).

17. Romaní F, Ramírez L, Grandez JDP, et al. Concordancia entre cinco criterios de síndrome metabólico en adolescentes de una zona altoandina del Perú. Rev Peru Med Exp Salud Publica 2023;

18. Mikkola TM, Mikkola TM, Salonen MK, et al. Associations of Fat and Lean Body Mass with Circulating Amino Acids in Older Men and Women. J Gerontol A Biol Sci Med Sci [homepage on the Internet] 2020;Available from: https://pubmed.ncbi.nlm.nih.gov/31095700

19. K.Dadabaeva R, A.Abduganieva E, O.Djusupov K, Kalkan I, F.Eshmamatov O. Comparative Characteristics Of Body Composition In Obesity Phenotypes. Texas Journal of Medical Science [homepage on the Internet] 2025;Available from: https://doi.org/10.62480/tjms.2025.vol42.pp29-35

20. Petri C, Campa F, Holway F, Pengue L, Arrones LS. ISAK-Based Anthropometric Standards for Elite Male and Female Soccer Players. Sports 2024;12(3).

21. Manuel Moreno DG. Definición Y Clasificación De La Obesidad Definition And Classification Of Obesity. 2012;

22. Zhang L, Wang Z, Chen Z, Wang X, Zhu M. Association of body composition assessed by bioelectrical impedance analysis with metabolic risk factor clustering among middle-aged Chinese. Prev Med Rep 2017;6:191–196.

23. Komada Y. Sleep and body composition, physical function in older women. Sleep Biol Rhythms [homepage on the Internet] 2023;Available from: https://pubmed.ncbi.nlm.nih.gov/38469286

24. Tyatenkova NN, Tyatenkova NN, Krupkina AM, Krupkina AM, Uvarova YE, Uvarova YE. Body Composition Of Young Women With Different Aging Rates. Modern Problems of Science and Education [homepage on the Internet] 2021;Available from: https://doi.org/10.17513/spno.30681

25. Podstawski R, Omelan A, Borysławski K, Wąsik J. Relationships between anthropometric and body composition characteristics and age in Polish women over 60 as affected by their socioeconomic and health status and physical activity levels. Front Physiol 2023;14.

26. Bondareva EA, Parfenteva OI, Troshina EA, et al. Agreement between bioimpedance analysis and ultrasound scanning in body composition assessment. American Journal of Human Biology 2024;36(4).

27. Pisaruk A, Grygorievа N V, Dubetska H, Koshel NM, Shatylo V. Method for assessment of the biological age of the musculoskeletal system. Issue 2 2023 [homepage on the Internet] 2023;Available from: https://doi.org/10.47855//jal9020-2023-2-1

28. Shaffer NC, Shaffer NC, Simonsick EM, et al. The Roles of Body Composition and Specific Strength in the Relationship Between Race and Physical Performance in Older Adults. Journals of Gerontology Series A-biological Sciences and Medical Sciences [homepage on the Internet] 2020;Available from: https://pubmed.ncbi.nlm.nih.gov/31825084

29. O’Connor KG, O’Connor KG, Tobin JD, et al. Serum Levels of Insulin-like Growth Factor-I Are Related to Age and Not to Body Composition in Healthy Women and Men. Journals of Gerontology Series A-biological Sciences and Medical Sciences [homepage on the Internet] 1998;Available from: https://pubmed.ncbi.nlm.nih.gov/9597048

30. Correa‐Rodríguez M, Correa-Rodríguez M, Mansouri-Yachou J El, et al. The Association of Body Mass Index and Body Composition with Pain, Disease Activity, Fatigue, Sleep and Anxiety in Women with Fibromyalgia. Nutrients [homepage on the Internet] 2019;Available from: https://pubmed.ncbi.nlm.nih.gov/31137906

31. Brown PJ, Brown PJ, Wall MM, et al. Biological Age, Not Chronological Age, Is Associated with Late-Life Depression. Journals of Gerontology Series A-biological Sciences and Medical Sciences [homepage on the Internet] 2018;Available from: https://pubmed.ncbi.nlm.nih.gov/28958059

32. Foucaut A-M, Foucaut A-M, Faure C, et al. Sedentary behavior, physical inactivity and body composition in relation to idiopathic infertility among men and women. bioRxiv [homepage on the Internet] 2019;Available from: https://pubmed.ncbi.nlm.nih.gov/31017887

33. Kim B-J, Kim B-J, Kim KW, Kim KW, Ko Y, Ko Y. PSUN12 Change of Computed Tomography-Based Body Composition After Adrenalectomy in Patients with Pheochromocytoma: Importance of Sympathetic Activity on Human Fat Metabolism. J Endocr Soc [homepage on the Internet] 2022;Available from: https://doi.org/10.1210/jendso/bvac150.246

34. Тятенкова НН, Tyatenkova NN, Uvarova YE, Uvarova IE, Bragina AM, Bragina Am. Body Composition In Persons Of The First Period Of Adulthood With Different Aging Rates. Siberian journal of life sciences and agriculture [homepage on the Internet] 2022;Available from: https://doi.org/10.12731/2658-6649-2022-14-1-198-216

Downloads

Published

2025-10-01

How to Cite

[1]
2025. Body composition, body mass index, and accelerated biological aging  in women beneficiaries of social programs in the southern Andes of Peru. Nutrición Clínica y Dietética Hospitalaria. 45, 3 (Oct. 2025). DOI:https://doi.org/10.12873/.

Similar Articles

1-10 of 563

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)