Worldwide research on calorie restriction in aging. A bibliometric study
DOI:
https://doi.org/10.12873/443murilloPalavras-chave:
Calorie restriction; aging; bibliometric, medicine antiaging, worldwide researchResumo
Background: Human aging is often associated with diseases that limit quality of life. Therapeutic anti-aging interventions, such as calorie restriction, can slow its progression. Analyzing the main areas of interest in the scientific literature allows us to understand the trends in research on calorie restriction in aging. This research aimed to conduct a comprehensive bibliometric analysis to determine the approaches and areas of research activity related to studying calorie restriction in aging and its use as a therapeutic intervention to slow its development. Methods: A bibliometric analysis was conducted based on publications deposited in Scopus using its API and VOSViewer. Results: A total of 5565 published documents were reviewed. The main keywords were analyzed and grouped into five study groups: risk factors and pathological consequences, biochemical mechanisms linked to caloric restriction and aging, experimental issues and clinical studies, functional aspects of the cell and caloric restriction, and his experimental study. The study shows the trend of increasing publications. Most of these articles are written in English and published in the United States. Conclusions: Calorie restriction in aging is a topic of interest to researchers, and more research is needed to improve its understanding and therapeutic application.
Referências
Ok, S.-C. Insights into the Anti-Aging Prevention and Diagnostic Medicine and Healthcare. Diagnostics (Basel) 2022, 12, doi:10.3390/diagnostics12040819.
Ros, M.; Carrascosa, J.M. Current Nutritional and Pharmacological Anti-Aging Interventions. Biochim Biophys Acta Mol Basis Dis 2020, 1866, 165612, doi:10.1016/j.bbadis.2019.165612.
Green, C.L.; Lamming, D.W.; Fontana, L. Molecular Mechanisms of Dietary Restriction Promoting Health and Longevity. Nat Rev Mol Cell Biol 2022, 23, 56–73, doi:10.1038/s41580-021-00411-4.
Fukuoh, T.; Nozaki, Y.; Mizunoe, Y.; Higami, Y. [Regulation of Aging and Lifespan by White Adipose Tissue]. Yakugaku Zasshi 2024, 144, 411–417, doi:10.1248/yakushi.23-00165-4.
Most, J.; Gilmore, L.A.; Smith, S.R.; Han, H.; Ravussin, E.; Redman, L.M. Significant Improvement in Cardiometabolic Health in Healthy Nonobese Individuals during Caloric Restriction-Induced Weight Loss and Weight Loss Maintenance. American Journal of Physiology-Endocrinology and Metabolism 2018, 314, E396–E405, doi:10.1152/ajpendo.00261.2017.
Martin, C.K.; Bhapkar, M.; Pittas, A.G.; Pieper, C.F.; Das, S.K.; Williamson, D.A.; Scott, T.; Redman, L.M.; Stein, R.; Gilhooly, C.H.; et al. Effect of Calorie Restriction on Mood, Quality of Life, Sleep, and Sexual Function in Healthy Nonobese Adults. JAMA Intern Med 2016, 176, 743, doi:10.1001/jamainternmed.2016.1189.
Hall, J.A.; Dominy, J.E.; Lee, Y.; Puigserver, P. The Sirtuin Family’s Role in Aging and Age-Associated Pathologies. Journal of Clinical Investigation 2013, 123, 973–979, doi:10.1172/JCI64094.
Madreiter-Sokolowski, C.; Sokolowski, A.; Waldeck-Weiermair, M.; Malli, R.; Graier, W. Targeting Mitochondria to Counteract Age-Related Cellular Dysfunction. Genes (Basel) 2018, 9, 165, doi:10.3390/genes9030165.
Hwangbo, D.-S.; Lee, H.-Y.; Abozaid, L.S.; Min, K.-J. Mechanisms of Lifespan Regulation by Calorie Restriction and Intermittent Fasting in Model Organisms. Nutrients 2020, 12, 1194, doi:10.3390/nu12041194.
Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide Research Trends on Medicinal Plants. Int J Environ Res Public Health 2020, 17, doi:10.3390/ijerph17103376.
Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ Res Methods 2015, 18, 429–472, doi:10.1177/1094428114562629.
Ros, M.; Carrascosa, J.M. Current Nutritional and Pharmacological Anti-Aging Interventions. Biochim Biophys Acta Mol Basis Dis 2020, 1866, 165612, doi:10.1016/j.bbadis.2019.165612.
Niknejad, N.; Ismail, W.; Bahari, M.; Hendradi, R.; Salleh, A.Z. Mapping the Research Trends on Blockchain Technology in Food and Agriculture Industry: A Bibliometric Analysis. Environ Technol Innov 2021, 21, 101272, doi:10.1016/j.eti.2020.101272.
López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of Aging: An Expanding Universe. Cell 2023, 186, 243–278, doi:10.1016/j.cell.2022.11.001.
Baechle, J.J.; Chen, N.; Makhijani, P.; Winer, S.; Furman, D.; Winer, D.A. Chronic Inflammation and the Hallmarks of Aging. Mol Metab 2023, 74, 101755, doi:10.1016/j.molmet.2023.101755.
Moskalev, A.A.; Shaposhnikov, M. V; Plyusnina, E.N.; Zhavoronkov, A.; Budovsky, A.; Yanai, H.; Fraifeld, V.E. The Role of DNA Damage and Repair in Aging through the Prism of Koch-like Criteria. Ageing Res Rev 2013, 12, 661–684, doi:10.1016/j.arr.2012.02.001.
Barzilai, N.; Ferrucci, L. Insulin Resistance and Aging: A Cause or a Protective Response? J Gerontol A Biol Sci Med Sci 2012, 67, 1329–1331, doi:10.1093/gerona/gls145.
Giunta, S. Exploring the Complex Relations between Inflammation and Aging (Inflamm-Aging): AntiInflammAging Remodelling of InflammAging, from Robustness to Frailty. Inflamm Res 2008, 57, 558–563, doi:10.1007/s00011-008-7243-2.
Hall, J.A.; Dominy, J.E.; Lee, Y.; Puigserver, P. The Sirtuin Family’s Role in Aging and Age-Associated Pathologies. J Clin Invest 2013, 123, 973–979, doi:10.1172/JCI64094.
Szarc vel Szic, K.; Declerck, K.; Vidaković, M.; Vanden Berghe, W. From Inflammaging to Healthy Aging by Dietary Lifestyle Choices: Is Epigenetics the Key to Personalized Nutrition? Clin Epigenetics 2015, 7, 33, doi:10.1186/s13148-015-0068-2.
Wątroba, M.; Szukiewicz, D. The Role of Sirtuins in Aging and Age-Related Diseases. Adv Med Sci 2016, 61, 52–62, doi:10.1016/j.advms.2015.09.003.
Wątroba, M.; Dudek, I.; Skoda, M.; Stangret, A.; Rzodkiewicz, P.; Szukiewicz, D. Sirtuins, Epigenetics and Longevity. Ageing Res Rev 2017, 40, 11–19, doi:10.1016/j.arr.2017.08.001.
Lee, M.B.; Hill, C.M.; Bitto, A.; Kaeberlein, M. Antiaging Diets: Separating Fact from Fiction. Science 2021, 374, eabe7365, doi:10.1126/science.abe7365.
Green, C.L.; Lamming, D.W.; Fontana, L. Molecular Mechanisms of Dietary Restriction Promoting Health and Longevity. Nat Rev Mol Cell Biol 2022, 23, 56–73, doi:10.1038/s41580-021-00411-4.
Madeo, F.; Carmona-Gutierrez, D.; Hofer, S.J.; Kroemer, G. Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab 2019, 29, 592–610, doi:10.1016/j.cmet.2019.01.018.
Bárcena, C.; Mayoral, P.; Quirós, P.M. Mitohormesis, an Antiaging Paradigm. In; 2018; pp. 35–77.
Martin, C.K.; Bhapkar, M.; Pittas, A.G.; Pieper, C.F.; Das, S.K.; Williamson, D.A.; Scott, T.; Redman, L.M.; Stein, R.; Gilhooly, C.H.; et al. Effect of Calorie Restriction on Mood, Quality of Life, Sleep, and Sexual Function in Healthy Nonobese Adults: The CALERIE 2 Randomized Clinical Trial. JAMA Intern Med 2016, 176, 743–752, doi:10.1001/jamainternmed.2016.1189.
Velingkaar, N.; Mezhnina, V.; Poe, A.; Makwana, K.; Tulsian, R.; Kondratov, R. V. Reduced Caloric Intake and Periodic Fasting Independently Contribute to Metabolic Effects of Caloric Restriction. Aging Cell 2020, 19, doi:10.1111/acel.13138.
Cypser, J.R.; Kitzenberg, D.; Park, S.-K. Dietary Restriction in C. Elegans: Recent Advances. Exp Gerontol 2013, 48, 1014–1017, doi:10.1016/j.exger.2013.02.018.
Green, C.L.; Lamming, D.W.; Fontana, L. Molecular Mechanisms of Dietary Restriction Promoting Health and Longevity. Nat Rev Mol Cell Biol 2022, 23, 56–73, doi:10.1038/s41580-021-00411-4.
Martucci, M.; Ostan, R.; Biondi, F.; Bellavista, E.; Fabbri, C.; Bertarelli, C.; Salvioli, S.; Capri, M.; Franceschi, C.; Santoro, A. Mediterranean Diet and Inflammaging within the Hormesis Paradigm. Nutr Rev 2017, 75, 442–455, doi:10.1093/nutrit/nux013.
Weiss, E.P.; Racette, S.B.; Villareal, D.T.; Fontana, L.; Steger-May, K.; Schechtman, K.B.; Klein, S.; Holloszy, J.O.; Washington University School of Medicine CALERIE Group Improvements in Glucose Tolerance and Insulin Action Induced by Increasing Energy Expenditure or Decreasing Energy Intake: A Randomized Controlled Trial. Am J Clin Nutr 2006, 84, 1033–1042, doi:10.1093/ajcn/84.5.1033.
Harman, D. Origin and Evolution of the Free Radical Theory of Aging: A Brief Personal History, 1954–2009. Biogerontology 2009, 10, 773–781, doi:10.1007/s10522-009-9234-2.
Yee, C.; Yang, W.; Hekimi, S. The Intrinsic Apoptosis Pathway Mediates the Pro-Longevity Response to Mitochondrial ROS in C. Elegans. Cell 2014, 157, 897–909, doi:10.1016/j.cell.2014.02.055.
Tavallaie, M.; Voshtani, R.; Deng, X.; Qiao, Y.; Jiang, F.; Collman, J.P.; Fu, L. Moderation of Mitochondrial Respiration Mitigates Metabolic Syndrome of Aging. Proceedings of the National Academy of Sciences 2020, 117, 9840–9850, doi:10.1073/pnas.1917948117.
Chen, G.; Kroemer, G.; Kepp, O. Mitophagy: An Emerging Role in Aging and Age-Associated Diseases. Front Cell Dev Biol 2020, 8, doi:10.3389/fcell.2020.00200.
Hodge, B.A.; Meyerhof, G.T.; Katewa, S.D.; Lian, T.; Lau, C.; Bar, S.; Leung, N.Y.; Li, M.; Li-Kroeger, D.; Melov, S.; et al. Dietary Restriction and the Transcription Factor Clock Delay Eye Aging to Extend Lifespan in Drosophila Melanogaster. Nat Commun 2022, 13, 3156, doi:10.1038/s41467-022-30975-4.
Rana, A.; Oliveira, M.P.; Khamoui, A. V.; Aparicio, R.; Rera, M.; Rossiter, H.B.; Walker, D.W. Promoting Drp1-Mediated Mitochondrial Fission in Midlife Prolongs Healthy Lifespan of Drosophila Melanogaster. Nat Commun 2017, 8, 448, doi:10.1038/s41467-017-00525-4.
Speakman, J.R.; Mitchell, S.E.; Mazidi, M. Calories or Protein? The Effect of Dietary Restriction on Lifespan in Rodents Is Explained by Calories Alone. Exp Gerontol 2016, 86, 28–38, doi:10.1016/j.exger.2016.03.011.
Campanella, A.; Misciagna, G.; Mirizzi, A.; Caruso, M.G.; Bonfiglio, C.; Aballay, L.R.; Vas de Arruda Silveira, L.; Bianco, A.; Franco, I.; Sorino, P.; et al. The Effect of the Mediterranean Diet on Lifespan: A Treatment-Effect Survival Analysis of a Population-Based Prospective Cohort Study in Southern Italy. Int J Epidemiol 2021, 50, 245–255, doi:10.1093/ije/dyaa222.
Downloads
Publicado
Como Citar
Licença
Copyright (c) 2024 Nutrición Clínica y Dietética Hospitalaria
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)