Comparison of the effects of cereals on body composition in a murinometric model

Authors

  • Edith Tello-Palma Universidad Nacional del Altiplano, Puno, Perú
  • Maritza Choque-Quispe Universidad Nacional del Altiplano, Puno, Perú
  • Luz Marina Teves Ponce Universidad Nacional del Altiplano, Puno, Perú
  • Myrian Eugenia Pacheco Tanaka Universidad Nacional del Altiplano, Puno, Perú
  • Rossana Gomez-Campos Universidad Catolica del Maule
  • Marco Cossio Bolaños

DOI:

https://doi.org/10.12873/451cossio

Keywords:

tendencia, condicion nutricional, madurez biológica, crecimiento

Abstract

Background: Anthropometric indices are essential tools in the assessment of health status and can be useful to analyze changes over time.

Objective: To determine if there are significant changes in body mass index (BMI) according to maturity status (MS) in adolescents over a 30-year interval.

Methodology: A cohort study was designed in schoolchildren aged 11.0 to 17.0 years. The sample was composed of two cohorts corresponding to the year 1997 and 2017. The sample selection was probabilistic (random), for the 1997 cohort 939 adolescents were selected and for 2017 there were 1026 adolescents. Weight and height were assessed. BMI and MS were calculated from anthropometric variables.

Results: Adolescents of both sexes in the 2017 cohort evidenced higher BMI relative to their 1997 counterparts. There were no significant differences in MS between the two cohorts. The correlation between BMI and MS in males increased from r= 0.25 (r2=0.062) to r= 0.27 (r2=0.067) over 30 years, while in females it was from r= 0.19 (r2= 0.036) to r= 0.26 (r2= 0.070). This reflects increases in BMI in both sexes, although slightly more in females than in males.

Conclusion: This study verified a significant increase in BMI in all MS over a 30-year period, with a greater increase in women than in males. These findings highlight the urgency of intervening in this population to address the problem of overweight and obesity.

References

Békés F, Schoenlechner R and Tömösközi S, Chapter 14 - Ancient Wheats and Pseudocereals for Possible use in Cereal-Grain Dietary Intolerances, in Cereal Grains, 2nd edn, ed. by C Wrigley, I Batey and D Miskelly. Woodhead Publishing, Cambridge, 2017; pp. 353–389. DOI: https://doi.org/10.1016/B978-0-08-100719-8.00014-0

Perez-Rea D, Antezana-Gomez R. The Functionality of Pseudocereal Starches. En M. Sjoo & L. Nilsson (Eds.), Starch in Food 2018. (2.a ed., pp. 509-542). Elsevier. https://doi.org/10.1016/B978-0-08-100868-3.00012-3 DOI: https://doi.org/10.1016/B978-0-08-100868-3.00012-3

Flórez-Martínez D.H, Rodríguez-Cortina J, Chavez-Oliveros L.F, Aguilera-Arango G.A, Morales-Castañeda A. Current trends and prospects in quinoa research: An approach for strategic knowledge areas. Food Science & Nutrition. 2023; 00, 1–23. https://doi.org/10.1002/fsn3.3891

Pathan S, Siddiqui RA. Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients. 2022;14(3):558. doi: 10.3390/nu14030558. DOI: https://doi.org/10.3390/nu14030558

Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 2010; 90: 2541–2547. DOI: https://doi.org/10.1002/jsfa.4158

Repo-Carrasco-Valencia R, Hellström J.K, Pihlava J.M, Mattila P.H. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 2010;120:128–133 DOI: https://doi.org/10.1016/j.foodchem.2009.09.087

Kim DS, Iida F. Kaniwa (Chenopodium pallidicaule)'s Nutritional Composition and Its Applicability as an Elder-Friendly Food with Gelling Agents. Gels. 2023;9(1):61. doi: 10.3390/gels9010061. DOI: https://doi.org/10.3390/gels9010061

Flórez-Martínez D.H, Rodríguez-Cortina J, Chavez-Oliveros L.F, Aguilera-Arango G.A, Morales-Castañeda A. Current trends and prospects in quinoa research: An approach for strategic knowledge areas. Food Science & Nutrition. 2023;00: 1–23. https://doi.org/10.1002/fsn3.3891 DOI: https://doi.org/10.1002/fsn3.3891

Angeli V, Miguel Silva P, Crispim Massuela D, Khan MW, Hamar A, Khajehei F, Graeff-Hönninger S, Piatti C. Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the "Golden Grain" and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods. 2020;9(2):216. doi: 10.3390/foods9020216.

Braun H, Koehler K, Geyer H, Kleiner J, Mester J, Schanzer W. Dietary supplement use among elite young German athletes. Int J Sport Nutr Exerc Metab. 2009; 19(1): 97-109. DOI: https://doi.org/10.1123/ijsnem.19.1.97

Oosthuyse T, Carstens M, Millen AM. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling. Int J Sports Med. 2015;36(8):636-46. doi: 10.1055/s-0034-1398647. DOI: https://doi.org/10.1055/s-0034-1398647

Rabassa-Blancoa J, Palma-Linare I. Efectos de los suplementos de proteína y aminoácidos de cadena ramificada en entrenamiento de fuerza: revisión bibliográfica. Rev Esp Nutr Hum Diet. 2017; 21(1): 55 – 73 DOI: https://doi.org/10.14306/renhyd.21.1.220

Kim J. Pre-sleep casein protein ingestion: new paradigm in post-exercise recovery nutrition. Phys Act Nutr. 2020;24(2):6-10. doi: 10.20463/pan.2020.0009. DOI: https://doi.org/10.20463/pan.2020.0009

Cossio-Bolaños M, Gómez Campos R, Vargas Vitoria R, Hochmuller Fogaça RT, de Arruda M. Curvas de referencia para valorar el crecimiento físico de ratas machos Wistar [Reference curves for assessing the physical growth of male Wistar rats]. Nutr Hosp. 2013 Nov 1;28(6):2151-6. Spanish. PMID: 24506395.

Tello-Palma E, Choque-Quispe M, Pacheco-Tanaka M, Zamalloa-Cuba W, Valencia-Pacho M, Donaires-Flores T, Macedo-Enriquez E, Viza-Salas A, Quispe-Romero A, Paredes-Ugarte W, Cossio-Bolaños M, Gómez-Campos R. Efectos de la suplementación de hierro microencapsulado y hemínico para la recuperación de los niveles de hemoglobina en ratas alimentadas sin hierro. Nutr Hosp. 2022;39(6):1357-1363. Spanish. doi: 10.20960/nh.04075. DOI: https://doi.org/10.20960/nh.04075

Cossio-Bolaños MA, Gómez R, Arruda M, Hochmuller R. Valores de confiabilidad de indicadores somáticos en ratas machos wistar. Actualizacion Nutr 2010a;11(4):296-302.

Cano-Rabano M, Ríos-Granja M. Cuidado y mantenimiento de los animales de experimentación. En: Pérez-García C, Díez Prieto M, García-Partida P. Introducción a la Experimentación y Protección Animal. León: Ed. Universidad de León; 1999. pp. 91-102.

Cossio-Bolaños MA, Gómez Campos R, Rojas J, Flores H. Propuesta de ecuaciones para predecir la composición corporal de ratas machos wistar. An Fac med. 2010b;71(2):97-102 DOI: https://doi.org/10.15381/anales.v71i2.80

Tapia M. Cultivos andinos subexplotados y su aporte a la alimentación. 2a. edición. Santiago, Chile, editorial FAO, 1997.

Repo-Carrasco R, Espinoza C, Jacobsen SE. Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule), Food Reviews International, 2003, 19:1-2, 179-189- doi: 10.1081/FRI-120018884 DOI: https://doi.org/10.1081/FRI-120018884

Repo-Carrasco R, Li Hoyos N. Elaboracio´n y evaluacio´n de alimentos infantiles con base en cultivos andinos. Arch. Latinoamericanos de Nutrición. 1993;43(2):168–175.

White P, Alvistur E, Dias C, Vinas E, White H, Collazos C. Nutrient content and protein quality of quinoa and cañihua, edible seed products of the Andes mountains. J. Agric. Food Chem. 1955;6:531–534 DOI: https://doi.org/10.1021/jf60052a009

Repo-Carrasco-Valencia R, Acevedo de La Cruz A, Icochea Alvarez JC, Kallio H. Chemical and functional characterization of Kañiwa (Chenopodium pallidicaule) grain, extrudate and bran. Plant Foods Hum Nutr. 2009;64(2):94-101. doi: 10.1007/s11130-009-0109-0. DOI: https://doi.org/10.1007/s11130-009-0109-0

Dakhili S, Abdolalizadeh L, Hosseini SM, Shojaee-Aliabadi S, Mirmoghtadaie L. Quinoa protein: Composition, structure and functional properties. Food Chemistry. 2019;299:125161. Doi: 10.1016/j.foodchem.2019.125161. DOI: https://doi.org/10.1016/j.foodchem.2019.125161

Bustos M, Ramos MI, Perez G, León A. Utilization of Kañawa (Chenopodium pallidicaule Aellen) Flourin Pasta Making. Journal of Chemistry.2019;Article ID 4385045, 8 pages https://doi.org/10.1155/2019/4385045 DOI: https://doi.org/10.1155/2019/4385045

Angeli V, Miguel Silva P, Crispim Massuela D, Khan MW, Hamar A, Khajehei F, Graeff-Hönninger S, Piatti C. Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the "Golden Grain" and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods. 2020;9(2):216. doi: 10.3390/foods9020216. DOI: https://doi.org/10.3390/foods9020216

Mitchell C.J, Milan A.M, Mitchell S.M, Zeng N, Ramzan F, Sharma P, Knowles S.O, Roy N.C, Sjodin A, Wagner K.H, et al. The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men: A 10-wk randomized controlled trial. Am. J. Clin. Nutr. 2017;106:1375–1383. DOI: https://doi.org/10.3945/ajcn.117.160325

Oikawa S.Y, McGlory C, D’Souza L.K, Morgan A.K, Saddler N.I, Baker S.K, Parise, G, Phillips S.M. A randomized controlled trial of the impact of protein supplementation on leg lean mass and integrated muscle protein synthesis during inactivity and energy restriction in older persons. Am. J. Clin. Nutr. 2018;108:1060–1068. DOI: https://doi.org/10.1093/ajcn/nqy193

Park Y, Choi J.E, Hwang H.S. Protein supplementation improves muscle mass and physical performance in undernourished prefrail and frail elderly subjects: A randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2018;108: 1026–1033. DOI: https://doi.org/10.1093/ajcn/nqy214

Müller O, Krawinkel M. Malnutrition and health in developing countries. CMAJ. 2005;173(3):279-86. doi: 10.1503/cmaj.050342. DOI: https://doi.org/10.1503/cmaj.050342

Kiani AK, Dhuli K, Donato K, Aquilanti B, Velluti V, Matera G, Iaconelli A, Connelly ST, Bellinato F, Gisondi P, Bertelli M. Main nutritional deficiencies. J Prev Med Hyg. 2022;63(2 Suppl 3):E93-E101. doi: 10.15167/2421-4248/jpmh2022.63.2S3.2752.

Alomari D.Z, Schierenbeck M, Alqudah AM, Alqahtani MD, Wagner S, Rolletschek H, Borisjuk L, Röder MS. Wheat Grains as a Sustainable Source of Protein for Health. Nutrients. 2023;15(20):4398. doi: 10.3390/nu15204398. DOI: https://doi.org/10.3390/nu15204398

FAO, IFAD, WFP. The state of food security in the world 2014: strengthening the enabling environment to improve food security and nutrition. 2014. http://www.fao.org/B37BC637-A0D5-4792-9D59-76BED47AA439/FinalDownload/DownloadId-D5639E627FFE7206EFBE682D322CD9A2/B37BC637-A0D5-4792-9D59-76BED47AA439/3/a-i4030e.pdf.

Zimmet P.Z, Magliano D.J, Herman W.H, Shaw J.E. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2014;2(1):56-64. doi: 10.1016/S2213-8587(13)70112-8. DOI: https://doi.org/10.1016/S2213-8587(13)70112-8

Graf BL, Rojas-Silva P, Rojo LE, Delatorre-Herrera J, Baldeón ME, Raskin I. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr Rev Food Sci Food Saf. 2015;14(4):431-445. doi: 10.1111/1541-4337.12135. DOI: https://doi.org/10.1111/1541-4337.12135

Downloads

Published

2025-03-06

Issue

Section

Research articles

Categories

How to Cite

[1]
2025. Comparison of the effects of cereals on body composition in a murinometric model. Nutrición Clínica y Dietética Hospitalaria. 45, 1 (Mar. 2025). DOI:https://doi.org/10.12873/451cossio.

Similar Articles

1-10 of 297

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>