A systematic review of oncologic pathways in cervical cancer and the correlation with dietary factors: insights into molecular mechanisms and nutritional influences.

Autores/as

  • Debora Chris Kezia -
  • Aiko Zavira Permana
  • Naura Luviezka Choirunnisa
  • Happy Kurnia Permatasari
  • Hikmawan Wahyu Sulistomo
  • Holipah
  • Nik Ahmad Nizam Nik Malek

DOI:

https://doi.org/10.12873/444debora

Palabras clave:

cervical cancer, oncologycal pathway, dietary factor

Resumen

Introduction: Cancer is currently the second greatest cause of death worldwide. Cervical cancer, the second most common malignancy in women worldwide, is characterized by dysregulated oncologic pathways contributing to its progression.

Goals : This systematic review aims to explore the role of different oncologic pathways in cervical cancer progression and the impact of diet on these pathways.

Methods: A systematic literature review was conducted using the PRISMA system and flow charts for quality assurance. The PICOS framework was used for inclusion criteria. Keywords used in six databases included ("signaling pathway") AND ("pathology") AND ("oncogenic") AND ("cervical cancer"). A risk of bias assessment was conducted on selected studies using the QUIN tool for in vitro studies.

Results: Nineteen studies were analyzed. Desired outcomes included induced proliferation, inhibited apoptosis, invasion-metastasis promotion, and angiogenesis. Identified oncologic pathways based on these outcomes include P53, TNF-mediated, FOXM1/WNT/β-catenin, EGFR, VEGF, NF-κB, Her-2, Histone 3, ERCC1, JAK/STAT, TGF-β, ErbB, BMP4/Hippo/ YAP1/TAZ, and ERK/c-Myc pathways. Nutritional factors, such as a western diet with processed meats, salty foods, chips, red meat, and instant foods, were found to affect the hyperactivation of these oncologic pathways, increasing cervical cancer risk.

Discussion: Each oncologic pathway has distinct mechanisms but some share similarities in triggering tumorigenesis. Increased proliferation results from heightened cell cycle activity and reduced tumor suppressor gene function. The suppression of caspase activity and pro-apoptotic proteins causes apoptosis inhibition. Metastasis and angiogenesis are driven by elevated expression of EMT and MMP proteins, promoting cancer cell invasion, migration, and new blood vessel formation. Nutritional factors influence these pathways, emphasizing the role of diet in cervical cancer progression and prevention.

Conclusion: Various and interconnected mechanisms underlie specific oncologic pathways impacting cervical cancer. Diet significantly influences the hyperactivation or inactivation of cancer-related pathways, affecting cervical cancer risk.

 

KEYWORDS

Cervical cancer, oncological pathway, dietary factors

Referencias

Momenimovahed Z, Salehiniya H. Incidence, mortality and risk factors of cervical cancer in the world. Biomedical Research and Therapy. 2017 Dec 8;4(12):1795. DOI: https://doi.org/10.15419/bmrat.v4i12.386

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May 4;71(3):209–49. DOI: https://doi.org/10.3322/caac.21660

Nisar S, Hashem S, Macha MA, Yadav SK, Muralitharan S, Therachiyil L, et al. Exploring Dysregulated Signaling Pathways in Cancer. Curr Pharm Des. 2020 Mar 18;26(4):429–45. DOI: https://doi.org/10.2174/1381612826666200115095937

Campos-Parra AD, Padua-Bracho A, Pedroza-Torres A, Figueroa-González G, Fernández-Retana J, Millan-Catalan O, et al. Comprehensive transcriptome analysis identifies pathways with therapeutic potential in locally advanced cervical cancer. Gynecol Oncol. 2016 Nov;143(2):406–13. DOI: https://doi.org/10.1016/j.ygyno.2016.08.327

Miranda-Galvis M, Loveless R, Kowalski LP, Teng Y. Impacts of Environmental Factors on Head and Neck Cancer Pathogenesis and Progression. Cells. 2021 Feb 13;10(2):389. DOI: https://doi.org/10.3390/cells10020389

Barchitta M, Maugeri A, Quattrocchi A, Agrifoglio O, Scalisi A, Agodi A. The Association of Dietary Patterns with High-Risk Human Papillomavirus Infection and Cervical Cancer: A Cross-Sectional Study in Italy. Nutrients. 2018 Apr 11;10(4):469. DOI: https://doi.org/10.3390/nu10040469

Peng X, Zhang Y, Gao J, Cai C. MiR-1258 promotes the apoptosis of cervical cancer cells by regulating the E2F1/P53 signaling pathway. Exp Mol Pathol. 2020 Jun;114:104368. DOI: https://doi.org/10.1016/j.yexmp.2020.104368

Wang Q, Wang B, Zhang W, Zhang T, Liu Q, Jiao X, et al. APLN promotes the proliferation, migration, and glycolysis of cervical cancer through the PI3K/AKT/mTOR pathway. Arch Biochem Biophys. 2024 May;755:109983. DOI: https://doi.org/10.1016/j.abb.2024.109983

Liu T, Chen J, Du Q, Liu J, Chen M, Ooi S, et al. Family with sequence similarity 83 member A promotes tumor cell proliferation and metastasis and predicts poor prognosis in cervical cancer. Pathol Res Pract. 2021 Jun;222:153450. DOI: https://doi.org/10.1016/j.prp.2021.153450

Kang C, Duo Y, Zheng L, Zhao N, Wang J, Liu Z, et al. CAFs-derived exosomes promote the development of cervical cancer by regulating miR-18a-5p-TMEM170B signaling axis. Biochem Biophys Res Commun. 2024 Jan;694:149403. DOI: https://doi.org/10.1016/j.bbrc.2023.149403

Li Q, Chen Y, Xu J, Zhu X. WITHDRAWN: LncRNA MIR497HG inhibits cervical cancer by upregulating BCL6B to block PI3K/AKT signaling. Biochem Biophys Res Commun. 2024 Feb;149727. DOI: https://doi.org/10.1016/j.bbrc.2024.149727

Zhang X, Wang M, Zhang Y, Yang J, Duan W. Knockdown of CENPU inhibits cervical cancer cell migration and stemness through the FOXM1/Wnt/β-catenin pathway. Tissue Cell. 2023 Apr;81:102009. DOI: https://doi.org/10.1016/j.tice.2022.102009

Meyer HJ, Gundermann P, Höhn AK, Hamerla G, Surov A. Associations between whole tumor histogram analysis parameters derived from ADC maps and expression of EGFR, VEGF, Hif 1-alpha, Her-2 and Histone 3 in uterine cervical cancer. Magn Reson Imaging. 2019 Apr;57:68–74. DOI: https://doi.org/10.1016/j.mri.2018.10.016

Li Z, Wei R, Yao S, Meng F, Kong L. HIF-1A as a prognostic biomarker related to invasion, migration and immunosuppression of cervical cancer. Heliyon. 2024 Jan;10(2):e24664. DOI: https://doi.org/10.1016/j.heliyon.2024.e24664

Chen Q, Tian WJ, Huang ML, Liu CH, Yao TT, Guan MM. Association Between HIF-1 Alpha Gene Polymorphisms and Response in Patients Undergoing Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer. Medical Science Monitor. 2016 Sep 5;22:3140–6. DOI: https://doi.org/10.12659/MSM.897486

de Almeida VH, de Melo AC, Meira DD, Pires AC, Nogueira-Rodrigues A, Pimenta-Inada HK, et al. Radiotherapy modulates expression of EGFR, ERCC1 and p53 in cervical cancer. Brazilian Journal of Medical and Biological Research. 2018;51(1). DOI: https://doi.org/10.1590/1414-431x20176822

Jiang Y, Li T, Qian Y, Zuo X, Liu J. Morphine in Combination with Ketamine Improves Cervical Cancer Pain and Suppresses Immune Function via the JAK3/STAT5 Pathway. Pain Res Manag. 2022 Apr 21;2022:1–9. DOI: https://doi.org/10.1155/2022/9364365

Tan B, Wikan N, Lin S, Thaklaewphan P, Potikanond S, Nimlamool W. Inhibitory actions of oxyresveratrol on the PI3K/AKT signaling cascade in cervical cancer cells. Biomedicine & Pharmacotherapy. 2024 Jan;170:115982. DOI: https://doi.org/10.1016/j.biopha.2023.115982

Chen Y, Chen S, Chen K, Ji L, Cui S. Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways. Chin Herb Med. 2024 Jan;16(1):94–105. DOI: https://doi.org/10.1016/j.chmed.2023.01.004

Shi WJ, Liu H, Ge YF, Wu D, Tan YJ, Shen YC, et al. LINC00673 exerts oncogenic function in cervical cancer by negatively regulating miR-126-5p expression and activates PTEN/PI3K/AKT signaling pathway. Cytokine. 2020 Dec;136:155286. DOI: https://doi.org/10.1016/j.cyto.2020.155286

Li J, Wang X, Li Z, Li M, Zheng X, Zheng D, et al. SULF1 Activates the VEGFR2/PI3K/AKT Pathway to Promote the Development of Cervical Cancer. Curr Cancer Drug Targets. 2024 Aug;24(8):820–34. DOI: https://doi.org/10.2174/1568009623666230804161607

Huang J, Yang J, Zhang Y, Lu D, Dai Y. FTO promotes cervical cancer cell proliferation, colony formation, migration and invasion via the regulation of the BMP4/Hippo/YAP1/TAZ pathway. Exp Cell Res. 2023 Jun;427(1):113585. DOI: https://doi.org/10.1016/j.yexcr.2023.113585

Ma H, Han F, Yan X, Qi G, Li Y, Li R, et al. PBK promotes aggressive phenotypes of cervical cancer through ERK/c‐Myc signaling pathway. J Cell Physiol. 2021 Apr 13;236(4):2767–81. DOI: https://doi.org/10.1002/jcp.30134

Xu T, Zeng Y, Shi L, Yang Q, Chen Y, Wu G, et al. Targeting NEK2 impairs oncogenesis and radioresistance via inhibiting the Wnt1/β-catenin signaling pathway in cervical cancer. Journal of Experimental & Clinical Cancer Research. 2020 Dec 10;39(1):183. DOI: https://doi.org/10.1186/s13046-020-01659-y

Feng Y, Zhou S, Li G, Hu C, Zou W, Zhang H, et al. Nuclear factor-κB–dependent microRNA-130a upregulation promotes cervical cancer cell growth by targeting phosphatase and tensin homolog. Arch Biochem Biophys. 2016 May;598:57–65. DOI: https://doi.org/10.1016/j.abb.2016.03.019

ZHANG W, LIU HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002 Mar;12(1):9–18. DOI: https://doi.org/10.1038/sj.cr.7290105

Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, et al. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol. 2017 Dec;120:141–50. DOI: https://doi.org/10.1016/j.critrevonc.2017.11.001

Abudoukerimu A, Hasimu A, Abudoukerimu A, Tuerxuntuoheti G, Huang Y, Wei J, et al. HIF‐1α Regulates the Progression of Cervical Cancer by Targeting YAP/TAZ. J Oncol. 2022;2022(1):3814809. DOI: https://doi.org/10.1155/2022/3814809

Santinon G, Brian I, Pocaterra A, Romani P, Franzolin E, Rampazzo C, et al. dNTP metabolism links mechanical cues and YAP/TAZ to cell growth and oncogene-induced senescence. EMBO J. 2018 Jun 12;37(11). DOI: https://doi.org/10.15252/embj.201797780

Zhang L, Chinnathambi A, Alharbi SA, Veeraraghavan VP, Mohan SK, Zhang G. Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway. Saudi J Biol Sci. 2020 Apr;27(4):1100–6. DOI: https://doi.org/10.1016/j.sjbs.2020.02.015

Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, et al. Role of the NFkB-signaling pathway in cancer. Onco Targets Ther. 2018 Apr;Volume 11:2063–73. DOI: https://doi.org/10.2147/OTT.S161109

Bu H, Liu D, Cui J, Cai K, Shen F. Wnt/β-catenin signaling pathway is involved in induction of apoptosis by oridonin in colon cancer COLO205 cells. Transl Cancer Res. 2019 Sep;8(5):1782–94. DOI: https://doi.org/10.21037/tcr.2019.08.25

Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences. 2020 May 6;77(9):1745–70. DOI: https://doi.org/10.1007/s00018-019-03351-7

Tomao S, Tomao F, Rossi L, Zaccarelli E, Caruso D, Zoratto F, et al. Angiogenesis and antiangiogenic agents in cervical cancer. Onco Targets Ther. 2014 Dec;2237. DOI: https://doi.org/10.2147/OTT.S68286

Yetkin-Arik B, Kastelein AW, Klaassen I, Jansen CHJR, Latul YP, Vittori M, et al. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2021 Jan;1875(1):188446. DOI: https://doi.org/10.1016/j.bbcan.2020.188446

Yang Q, Al-Hendy A. The Regulatory Functions and the Mechanisms of Long Non-Coding RNAs in Cervical Cancer. Cells. 2022 Mar 29;11(7):1149. DOI: https://doi.org/10.3390/cells11071149

Chen L, Qing J, Xiao Y, Huang X, Chi Y, Chen Z. TIM-1 promotes proliferation and metastasis, and inhibits apoptosis, in cervical cancer through the PI3K/AKT/p53 pathway. BMC Cancer. 2022 Apr 7;22(1):370. DOI: https://doi.org/10.1186/s12885-022-09386-7

Qureshi R, Arora H, Rizvi MA. EMT in cervical cancer: Its role in tumour progression and response to therapy. Cancer Lett. 2015 Jan;356(2):321–31. DOI: https://doi.org/10.1016/j.canlet.2014.09.021

Medina-Contreras O, Luvián-Morales J, Valdez-Palomares F, Flores-Cisneros L, Sánchez-López M, Soto-Lugo JH, et al. Immunonutrition in Cervical Cancer: Immune Response Modulation by Diet. Revista de investigaci�n Cl�nica. 2020 Sep 17;72(4). DOI: https://doi.org/10.24875/RIC.20000062

Nath S, Nasrin SS, Samanta A, Nuzhad A, Ghosh P, Manna A, et al. The Effects of Dietary Nutrient Intake on Cervical Cancer: A Brief Review. Indian Journal of Medical and Paediatric Oncology. 2023 Apr 24; DOI: https://doi.org/10.1055/s-0043-1768049

Koshiyama M. The Effects of the Dietary and Nutrient Intake on Gynecologic Cancers. Healthcare. 2019 Jul 7;7(3):88. DOI: https://doi.org/10.3390/healthcare7030088

Ferreira M, Gomes D, Neto M, Passarinha LA, Costa D, Sousa Â. Development and Characterization of Quercetin-Loaded Delivery Systems for Increasing Its Bioavailability in Cervical Cancer Cells. Pharmaceutics. 2023 Mar 14;15(3):936. DOI: https://doi.org/10.3390/pharmaceutics15030936

Descargas

Publicado

22-10-2024

Cómo citar

[1]
2024. A systematic review of oncologic pathways in cervical cancer and the correlation with dietary factors: insights into molecular mechanisms and nutritional influences. Nutrición Clínica y Dietética Hospitalaria. 44, 4 (Oct. 2024). DOI:https://doi.org/10.12873/444debora.

Artículos similares

1-10 de 236

También puede Iniciar una búsqueda de similitud avanzada para este artículo.