Fetal growth in chronic hypoxia: birth weight percentile curves at high altitude

Authors

  • David ANCASSI-HERMOZA Servicio de Neonatología. Hospital Nacional Ramiro Prialé Prialé. Huancayo, Perú.
  • Carlos Hugo TORRES SALINAS Escuela Académico Profesional de Medicina Humana, Universidad Continental, Perú.

DOI:

https://doi.org/10.12873/

Keywords:

recien nacido, peso al nacer, altitud, graficos de crecimiento, hipoxia

Abstract

Introduction: Currently used birth growth charts are not 
suitable for newborns in high-altitude areas. This study aims to propose weight charts for newborns born at high altitudes. 
Methods: This was a retrospective, cross-sectional study 
based on anthropometric data from 30,756 newborns born between January 2012 and December 2024 in a hospital located at 3,250 meters above sea level. Newborns were included from 28 to 42 weeks, with birth weight recorded within the first 24 hours of life. The 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of birth weight were calculated using quantile regression models by sex and gestational age. The goodness of fit of the models was assessed using the Akaike information 
criterion and the Kolmogorov-Smirnov test, and finally compared with the INTERGROWTH-21st charts. 
Results: Birth weight percentiles between sexes did not 
show significant differences until after 37 weeks, with higher average weights in males, the highest being +150 g at 42 weeks. When compared with INTERGROWTH-21st, lower weights were evident for both sexes. Conclusions: The percentile curves obtained suggest that, for a more accurate assessment of fetal growth and identification of at-risk newborns in high-altitude populations, it is advisable to use separate charts, due to differences in intrauterine growth resulting from a chronic hypobaric hypoxia environment. 

Author Biographies

  • David ANCASSI-HERMOZA, Servicio de Neonatología. Hospital Nacional Ramiro Prialé Prialé. Huancayo, Perú.

    Médico Cirujano especialista en Pediatría

  • Carlos Hugo TORRES SALINAS, Escuela Académico Profesional de Medicina Humana, Universidad Continental, Perú.

    Médico cirujano Especialista en Pediatría.

    Maestro en Medicina por la USMP y Post Graduate en Nutrición Pediátrica por la Universidad de Boston USA.

    Investigador RENACYT y Vocal científico de la Sociedad Peruana de Nutrición.

    Docente Universitario en la Cátedra de Pediatría, UC.

References

1.- Norris T. Chapter 2. Prenatal and infant growth, Editor(s): Noël Cameron, Lawrence M. Schell, Human Growth and Development (Third Edition), Academic Press, 2022 [citado 04 de Mayo de 2025]; Pages 23-72, ISBN 9780128226520. DOI:10.1016/B978-0-12-822652-0.00021-3

2.- Altimier L., Phillips R. The Neonatal Integrative Developmental Care Model: Advanced Clinical Applications of the Seven Core Measures for Neuroprotective Family-centered Developmental Care, Newborn and Infant Nursing Reviews. 2016 [citado 04 de Mayo de 2025]; Volume 16, Issue 4, Pages 230-244, ISSN 1527-3369. DOI: 10.1053/j.nainr.2016.09.030

3.- Malhotra A., Allison B. Castillo-Melendez M., Jenkin G., Polglase, G., Miller S. Neonatal Morbidities of Fetal Growth Restriction: Pathophysiology and Impact. Frontiers in endocrinology. 2019 [citado 04 de Mayo de 2025]; Vol. 10. DOI: 10.3389/fendo.2019.00055

4.- Chew L., Osuchukwu O., Reed D., et al. Fetal Growth Restriction. [Updated 2024 Aug 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK562268/

5.- Hutter D., Kingdom J., Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. International journal of pediatrics. 2010 [citado 04 de Mayo de 2025]; ID 401323. DOI: 10.1155/2010/401323

6.- Avila-Hilari A., Tinoco-Solorzano A., Vélez-Páez J. Critical pregnancy at altitudes: A look at Latin America. Medicina Intensiva. 2024 [citado 27 de Mayo de 2025]; Vol. 48. Issue7. Pages 411-420. Disponible en: https://www.medintensiva.org/en-critical-pregnancy-at-altitude-a-articulo-S2173572724001024

7.- Haas J., Baker P., Hunt E. The Effects of High Altitude on Body Size and Composition of the Newborn Infant in Southern Peru. JSTOR. 1977 [citado 27 de Mayo de 2025]; Vol.49 - N°4, pp. 611-628. Disponible en: https://www.jstor.org/stable/41464481

8.- Hernández-Vásquez A., Bartra A., Vargas-Fernández, R. Altitude and Its Association with Low Birth Weight among Children of 151,873 Peruvian Women: A Pooled Analysis of a Nationally Representative Survey. International journal of environmental research and public health. 2023 [citado 27 de Mayo de 2025]; 20(2), 1411. DOI: 10.3390/ijerph20021411

9.- Bailey A., Donnelly, M., Bol K., Moore L., Julian C. High Altitude Continues to Reduce Birth Weights in Colorado. Maternal and child health journal. 2019 [citado 27 de Mayo de 2025]; 23(11), 1573–1580. DOI: 10.1007/s10995-019-02788-3

10.- Grant I., Giussani, D., Aiken C. Fetal growth and spontaneous preterm birth in high-altitude pregnancy: A systematic review, meta-analysis, and meta-regression. International journal of gynaecology and obstetrics 2022 [citado 27 de Mayo de 2025]; 157(2), 221–229. DOI: 10.1002/ijgo.13779

11.- Yang L., Helbich-Poschacher V., Cao C., Klebermass-Schrehof K., Waldhoer T. Maternal altitude and risk of low birthweight: A systematic review and meta-analyses, Placenta 2020 [citado 27 de Mayo de 2025]; Volume 101, 2020, pages 124-131, ISSN 0143-4004. DOI: 10.1016/j.placenta.2020.09.010

12.- Giussani D., Phillips P., Anstee S. et al. Effects of Altitude versus Economic Status on Birth Weight and Body Shape at Birth. Pediatric Research 2001 [citado 27 de Mayo de 2025]; 49, 490–494. DOI: 10.1203/00006450-200104000-00009

13.- Wehby G., Castilla E., Lopez-Camelo J., The impact of altitude on infant health in South America, Econ. Hum. Biol. 2010 [citado 27 de Mayo de 2025]; Volume 8, Issue 2. Pages 197-211, ISSN 1570-677X. DOI: 10.1016/j.ehb.2010.04.002

14.- Tremblay J, Ainslie P. Global and country-level estimates of human population at high altitude. Proc Natl Acad Sci USA. 2021 [citado 27 de Mayo de 2025]; 4;118(18):e2102463118. DOI:10.1073/pnas.2102463118.

15.- Chakraborty D, Rumi M. The Impact of Hypoxia in Early Pregnancy on Placental Cells. Int J Mol Sci. 2021 [citado 27 de Mayo de 2025];15;22(18):9675.:10.3390/ijms22189675.

16.- Julian C, Wilson M, Moore L. Evolutionary adaptation to high altitude: a view from in utero. Am J Hum Biol. 2009 [citado 27 de Mayo de 2025]; Mar-Apr;21(2):614–22. DOI:10.1002/ajhb.20800.

17.- Moore L, Charles S, Julian C. Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol. 2011 [citado 27 de Mayo de 2025];146(Suppl 53):25–64. DOI:10.1002/ajpa.21659.

18.- Bailey B, Euser A, Bol K, Julian C, Moore L. High-altitude residence alters blood-pressure course and increases hypertensive disorders of pregnancy. J Matern Fetal Neonatal Med. 2022 [citado 27 de Mayo de 2025];Apr;35(7):1264–71. DOI:10.1080/14767058.2020.1745181.

19.- Ibarra-Ibarra B, Luna-Muñoz L, Mutchinick O, Arteaga-Vázquez J. Moderate altitude as a risk factor for isolated congenital malformations. Results from a case-control multicenter-multiregional study. Birth Defects Res. 2024 [citado 27 de Mayo de 2025];116(7):e2335. DOI:10.1002/bdr2.2335.

20.- Gonzales GF, Tapia V, Fort AL. Maternal and perinatal outcomes in pregnancies at high altitude in Peru. J Matern Fetal Neonatal Med. 2025 [citado 01 de Junio de 2025];38(1):1–7. DOI: 10.1016/j.jmfnm.2024.10.005.

21. Villar J, Cheikh Ismail L, Victora C, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014 [citado 01 de Junio de 2025];384(9946):857-868. DOI:10.1016/S0140-6736(14)60932-6

22. Yao J, Jin Z, Li J, et al. Birth weight at high altitude: A systematic review and meta-analysis. PLoS ONE. 2020 [citado 15 de Julio de 2025];15(5):e0233386. DOI:10.1371/journal.pone.0233386

23. Zamudio S. High-altitude hypoxia and preeclampsia. Front Biosci. 2007 [citado 15 de Julio de 2025];12:2967–2977. DOI:10.2741/2298

24. Moore L, Charles S, Julian C. Humans at high altitude: hypoxia and fetal growth. Respir Physiol Neurobiol. 2011 [citado 15 de Julio de 2025];178(1):181-190. DOI:10.1016/j.resp.2011.04.018

25. Beall C. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA. 2007 [citado 15 de Julio de 2025];104(Suppl 1):8655-8660. DOI:10.1073/pnas.0701985104

26. Giussani D, Davidge S. Developmental programming of cardiovascular disease by prenatal hypoxia. J Dev Orig Health Dis. 2012 [citado 15 de Julio de 2025];12;4(5):328–337. DOI:10.1017/S2040174412000595

27. Julian C, Moore L. Human genetic adaptation to high-altitude hypoxia. Respir Physiol Neurobiol. 2017 [citado 15 de Julio de 2025];258:18-27. DOI:10.1016/j.resp.2017.03.009

Downloads

Published

2025-11-26

How to Cite

[1]
2025. Fetal growth in chronic hypoxia: birth weight percentile curves at high altitude. Nutrición Clínica y Dietética Hospitalaria. 45, 4 (Nov. 2025). DOI:https://doi.org/10.12873/.

Similar Articles

1-10 of 671

You may also start an advanced similarity search for this article.