Risk factors associated with acute respiratory diseases in hospital personnel
DOI:
https://doi.org/10.12873/434gordilloKeywords:
Factores de riesgo; Asociación; Enfermedades respiratoriasAbstract
Introduction: Acute respiratory diseases have increased their prevalence nationally and internationally. There are many factors that are involved in its improvement such as the environment, diseases and biochemical indicators.
Objectives: Determine the risk factors associated with acute respiratory diseases in Hospital personnel.
Methods: Cross-sectional study, the sample was 748 health workers attended in the period from November 2020 to January 2021 at the University Hospital of Guayaquil. The statistical analyzes were used with the R software in its version 4.2.1. The U-Mann-Whitney test was used to analyze whether there are significant differences between people with acute respiratory disease and those who do not. The chi-square statistical test to analyze whether there is statistical dependence between the qualitative variables and the acute respiratory disease, and finally, a logistic regression model.
Results: Those who present higher values of the quantitative variables present respiratory disease (p<0.000). There is an association between the qualitative variables with acute respiratory disease (p<0.05). The logistic regression model found that as the person's body mass index increases, the probability of having acute respiratory disease increases 2,251 times; as the person's age increases, the probability increases by 0.02 and as total body fat increases, the probability of having acute respiratory disease decreases by 0.052.
Conclusions: The quantitative and qualitative explanatory variables were statistically associated with the condition that the person has acute respiratory disease. Body mass index, age, and total body fat were more relevant in classifying people with acute respiratory disease.
References
Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, Nunez CM, Patel SR, Penzel T, Pepin JL et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir. Med. 2019; 7: 687– 98. doi: 10.1016/S2213-2600(19)30198-5.
Afshin A, Reitsma MB, Murray CJL. Health effects of overweight and obesity in 195 countries. N. Engl. J. Med. 2017; 377: 1496–
doi: 10.1056/NEJMoa1614362.
INEC. Estadísticas Vitales Registro Estadístico de Nacidos vivos y Defunciones 2016. Inec, 1, 315. doi: 10.1016/j.jhazmat.2015. 06.018
Jackson-Morris, A.M.; Nugent, R.; Ralston, J.; Barata Cavalcante, O.; Wilding, J. Strengthening Resistance to the COVID-19 Pandemic and Fostering Future Resilience Requires Concerted Action on Obesity. Glob. Health Action 2020, 13. doi: 10.1080/ 16549716.2020.1804700.
Kaitlin Kiernan and Nancie J. MacIver. The Role of the Adipokine Leptin in Immune Cell Function in Health and Disease. Front. Immunol., 29 January 2021. Sec. Inflammation.Volume 11 – 2020. doi: 10.3389/fimmu.2020.622468
Park H-K, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism 2015; 64(1):24–34. doi: 10.1016/j.metabol.2014.08.004
Woolcott OO, Bergman RN. Relative Fat Mass as an estimator of whole-body fat percentage among children and adolescents: A cross-sectional study using NHANES. Sci Rep. 2019; 24;9(1): 15279. doi: 10.1038/s41598-019-51701-z.
Kouri, E., Pope, H. G., Katz, D. L. & Oliva, P. Fat free mass index in users and non-users of anabolic–androgenic steroids. Clinical Journal of Sports Medicine.1995; 5, 223-228
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2022. Vienna, Austria. https://www.R-project.org/
Dobson A y Barnett, A. An introduction to generalized linear models. CRC press. 2018.
Xu C, Zheng L, Jiang Y, Jin L. A prediction model for predicting the risk of acute respiratory distress syndrome in sepsis patients: a retrospective cohort study. BMC Pulm Med. 2023; 23(1):78. doi: 10.1186/s12890-023-02365-z.
Louie JK, Acosta M, Winter K, Jean C, Gavali S, Schechter R, et al. Factors associated with death or hospitalization due to pandemic 2009 influenza A(H1N1) infection in California. JAMA. 2009;302(17):1896-902. doi: 10.1001/jama.2009.1583.
Hajifathalian K, Kumar S, Newberry C, Shah S, Fortune B, Krisko T, et al. Obesity is associated with worse outcomes in COVID-19: Analysis of Early Data From New York City. Obesity. 2020; 28(9):1606-1612. doi: 10.1002/oby.22923.
Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020 Jul;28(7): 1195-1199. doi: 10.1002/oby.22831.
Petrova D, Salamanca-Fernández E, Rodríguez Barranco M, Navarro Pérez P, Jiménez Moleón JJ, Sánchez MJ. La obesidad como factor de riesgo en personas con COVID-19: posibles mecanismos e implicaciones [Obesity as a risk factor in COVID-19: Possible mechanisms and implications]. Aten Primaria. 2020;
(7):496-500. doi: 10.1016/j.aprim.2020.05.003
Saldivia RKO, Ojeda S, Ivanissevich ML. Envejecimiento y Enfer medades Respiratorias en las Personas Adultas Mayores. El caso de un centro de jubilados de Rio Gallegos. Inf Científicos Téc - UNPA. 2020;12(3):166-93. doi: 10.22305/ict-unpa.v12.n3.747
Wang H, Huang J, Liao W, Xu J, He Z, Liu Y, et al. Valor pronóstico del ancho de distribución de glóbulos rojos en pacientes con síndrome de dificultad respiratoria aguda inducido por sepsis: un estudio de cohorte retrospectivo. Marcadores Dis. 2021. doi:20215543822.
Li S, Zhao D, Cui J, Wang L, Ma X, Li Y. Correlación de microRNA125a/b con riesgo y pronóstico de síndrome de dificultad respiratoria aguda en pacientes con sepsis. Anal de laboratorio de J Clin. 2020;34. doi: 10.1002/jcla.23098.
Onatra W, Vargas S, Páez E, Rojas D, López A. Correlación entre la enfermedad respiratoria aguda (ERA) en mujeres embarazadas y la calidad del aire. Rev UDCA Actual Amp Divulg Científica. 2009;12(2):27-37.
Zhang Z, Han N, Shen Y. S100A12 promueve la inflamación y la célula apoptosis en SDRA inducido por sepsis a través de la activación de la señalización del infammasoma NLRP3. Mol Immunol. 2020; 13; 122:38-48. doi: 10.1016/j.molimm.2020.03.022.
Wang R, Cai L, Zhang J, He M, Xu J. Predicción del síndrome de dificultad respiratoria aguda en pacientes con lesión cerebral traumática basada en algoritmos de aprendizaje automático. Medicina. 2023; 59:171. doi: 10.3390/medicina59010171
Ren Y, Zhang L, Xu F, Han D, Zheng S, Zhang F, et al. Análisis de factores de riesgo y nomograma para predecir la mortalidad hospitalaria en pacientes de UCI con sepsis e infección pulmonar. BMC Pulm Med. 2022; 22:17.
Li X, Shen H, Zhou T, Cao X, Chen Y, Liang Y, et al. ¿Un aumento en ¿El nivel sérico de FGF21 predice la mortalidad a los 28 días de los pacientes críticos con sepsis y SDRA? Respir Res. 2021; 22(1):182. doi: 10.1186/s12931-021-01778-w.
Downloads
Published
How to Cite
License
Copyright (c) 2023 Nutrición Clínica y Dietética Hospitalaria
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)