Hydropuntia edulis as a Nutritional Therapeutic Agent for Human Melanoma: In Silico Approach and In Vitro Validation for Functional Food Application

Autores/as

  • Enggar Yusrina HASYYATI Master of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Maftuchah ROCHMANTI Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya
  • NAFHAH Master of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Adha Fauzi HENDRAWAN Department of Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Arifa MUSTIKA Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya
  • Happy Kurnia PERMATASARI Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang,Indonesia
  • Giconda MILLOTTI Faculty of Natural Sciences, Juraj Dobrila University of Pula, Pula, Croatia
  • Fahrul Nurkolis Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga)

DOI:

https://doi.org/10.12873/

Palabras clave:

Hydropuntia edulis, melanoma, metabolomics, molecular docking, anticancer, antioxidant, marine bioactives

Resumen

Background: Melanoma is one of the deadliest forms of skin cancer, with rising incidence and limited responsiveness to conventional chemotherapy. Marine macroalgae have recentlyemerged as a promising source of novel bioactive compounds with potential anticancer properties. Objective: This study aimed to investigate the anticarcinogenic andantioxidant potential of Hydropuntia edulis extract (HEE) using integrated metabolomicprofiling, in silico predictions, and in vitro validation against melanoma.

Methods: Untargeted LC-HRMS metabolomic profiling was conducted to identify bioactive constituents in HEE. Key compounds were further analyzed through structure–activity relationship (SAR), ADMET, and molecular docking simulations targeting melanoma-related proteins (BRAF, AKT1, EGFR, and TYRO3). Antioxidant and antiproliferative effects were assessed using DPPH and MTT assays on B16-F10 melanoma cells.

Results: Several metabolites including Sangivamycin, Michosterol C, Linamarin, andElaiomycin K were identified. SAR analysis showed high antineoplastic probability for Linamarin (Pa = 0.831), Sangivamycin (Pa = 0.730), and Michosterol C (Pa = 0.759).Michosterol C showed strong binding affinity to BRAF (−9.2 kcal/mol), comparable to Dabrafenib (−9.1 kcal/mol). HEE demonstrated dose-dependent DPPH radical scavenging andinhibited melanoma cell proliferation with IC50 values similar to positive controls.

Conclusion: Hydropuntia edulis holds promise as a natural therapeutic candidate against melanoma due to its multitargeted bioactive profile and significant in vitro efficacy. Further preclinical studies are warranted to explore its translational potential.

Biografía del autor/a

  • Enggar Yusrina HASYYATI, Master of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
    Master of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Maftuchah ROCHMANTI, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya
    Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya
  • NAFHAH , Master of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
    1. Master of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Adha Fauzi HENDRAWAN, Department of Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
    1. Department of Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Arifa MUSTIKA, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya
    Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya
  • Happy Kurnia PERMATASARI, Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang,Indonesia
    1. Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang,Indonesia
  • Giconda MILLOTTI, Faculty of Natural Sciences, Juraj Dobrila University of Pula, Pula, Croatia
    1. Faculty of Natural Sciences, Juraj Dobrila University of Pula, Pula, Croatia

Referencias

1. Ahmed, I.; Asgher, M.; Sher, F.; Hussain, S.M.; Nazish, N.; Joshi, N.; Sharma, A.; Parra- Saldívar, R.; Bilal, M.; Iqbal, H.M.N. Exploring Marine as a Rich Source of Bioactive Peptides: Challenges and Opportunities from Marine Pharmacology. Mar. Drugs 2022, 20, 208.

2. Biris-Dorhoi, E.-S.; Michiu, D.; Pop, C.R.; Rotar, A.M.; Tofana, M.; Pop, O.L.; Socaci, S.A.; Farcas, A.C. Macroalgae-A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020, 12, 3085.

3. Prasedya, E.S.; Fitriani, F.; Saraswati, P.B.A.; Haqiqi, N.; Qoriasmadillah, W.; Hikmaturrohmi, H.; Nurhidayati, S.Z.; Ariati, P.E.P. Evaluation of Bioprospecting Potential of Epiphytic Gracilaria Edulis Harvested from Seaweed Farm in Seriwe Bay, Lombok, Indonesia. Biodiversitas 2023, 24, doi:10.13057/biodiv/d241016.

4. Lopes, J.; Rodrigues, C.M.P.; Gaspar, M.M.; Reis, C.P. Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers (Basel) 2022, 14, 4652.

5. Fenton, S.E.; Sosman, J.A.; Chandra, S. Resistance Mechanisms in Melanoma to Immuneoncologic Therapy with Checkpoint Inhibitors. Canc. Drug Resist. 2019, 2, 744–761.

6. Helmbach, H.; Rossmann, E.; Kern, M.A.; Schadendorf, D. Drug-Resistance in Human Melanoma. Int. J. Cancer 2001, 93, 617–622.

7. Czarnecka, A.M.; Bartnik, E.; Fiedorowicz, M.; Rutkowski, P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int. J. Mol. Sci. 2020, 21, 4576.

8. Palmieri, G.; Ombra, M.; Colombino, M.; Casula, M.; Sini, M.; Manca, A.; Paliogiannis, P.; Ascierto, P.A.; Cossu, A. Multiple Molecular Pathways in Melanomagenesis: Characterization of Therapeutic Targets. Front. Oncol. 2015, 5, 183.

9. Imani, S.; Roozitalab, G.; Emadi, M.; Moradi, A.; Behzadi, P.; Jabbarzadeh Kaboli, P. The Evolution of BRAF-Targeted Therapies in Melanoma: Overcoming Hurdles and Unleashing Novel Strategies. Front. Oncol. 2024, 14, 1504142.

10. Taslim, N.A.; Hardinsyah, H.; Radu, S.; Mayulu, N.; Tsopmo, A.; Kurniawan, R.; Tallei, T.E.; Herlina, T.; Maksum, I.P.; Nurkolis, F. Functional Food Candidate from Indonesian Green Algae Caulerpa Racemosa (Försskal) J. Agardh by Two Extraction Methods: Metabolite Profile, Antioxidant Activity, and Cytotoxic Properties. J. Agric. Food Res. 2024, 18, 101513.

11. Druzhilovskiy, D.S.; Rudik, A.V.; Filimonov, D.A.; Gloriozova, T.A.; Lagunin, A.A.; Dmitriev, A.V.; Pogodin, P.V.; Dubovskaya, V.I.; Ivanov, S.M.; Tarasova, O.A.; et al. Computational

Platform Way2Drug: From the Prediction of Biological Activity to Drug Repurposing. Russ. Chem. Bull. 2017, 66, 1832–1841.

12. Mahmud, S.; Mita, M.A.; Biswas, S.; Paul, G.K.; Promi, M.M.; Afrose, S.; Hasan, R.; Shimu, S.S.; Zaman, S.; Uddin, S.; et al. Molecular Docking and Dynamics Study to Explore Phytochemical Ligand Molecules against the Main Protease of SARS-CoV-2 from Extensive Phytochemical Datasets. Expert Rev. Clin. Pharmacol. 2021, 14, 1305–1315.

13. Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46, W257–W263.

14. Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein–Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646.

15. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395.

16. Nurkolis, F.; Taslim, N.A.; Qhabibi, F.R.; Kang, S.; Moon, M.; Choi, J.; Choi, M.; Park, M.N.; Mayulu, N.; Kim, B. Ulvophyte Green Algae Caulerpa Lentillifera: Metabolites Profile and Antioxidant, Anticancer, Anti-Obesity, and in Vitro Cytotoxicity Properties. Molecules 2023, 28, doi:10.3390/molecules28031365.

17. Kurniawan, R.; Nurkolis, F.; Taslim, N.A.; Subali, D.; Surya, R.; Gunawan, W.B.; Alisaputra, D.; Mayulu, N.; Salindeho, N.; Kim, B. Carotenoids Composition of Green Algae Caulerpa Racemosa and Their Antidiabetic, Anti-Obesity, Antioxidant, and Anti-Inflammatory Properties. Molecules 2023, 28, doi:10.3390/molecules28073267.

18. Pappalardo, F.; Russo, G.; Candido, S.; Pennisi, M.; Cavalieri, S.; Motta, S.; McCubrey, J.A.; Nicoletti, F.; Libra, M. Computational Modeling of PI3K/AKT and MAPK Signaling Pathways in Melanoma Cancer. PLoS One 2016, 11, e0152104.

19. Pradhan, B.; Nayak, R.; Patra, S.; Jit, B.P.; Ragusa, A.; Jena, M. Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2020, 26, 37.

20. Yao, W.; Qiu, H.-M.; Cheong, K.-L.; Zhong, S. Advances in Anti-Cancer Effects and Underlying Mechanisms of Marine Algae Polysaccharides. Int. J. Biol. Macromol. 2022, 221, 472–485.

21. Ferdous, U.T.; Yusof, Z.N.B. Medicinal Prospects of Antioxidants from Algal Sources in Cancer Therapy. Front. Pharmacol. 2021, 12, 593116.

22. Chendriadi, V. R., & Sandhika, W. (2024). Exploiting BRAF Mutation for Treatment of Malignant Melanoma: A Literature Review. International Journal of Research and Review, 10(12), 845– 853. https://doi.org/10.52403/ijrr.20231285

23. Gaughan, E. M., & Horton, B. J. (2022). Outcomes From Cytotoxic Chemotherapy Following Progression on Immunotherapy in Metastatic Melanoma: An Institutional Case-Series. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.855782

24. Rosemary, T., Arulkumar, A., Paramasivam, S., Mondragon-Portocarrero, A., & Miranda, J. (2019). Biochemical, Micronutrient and Physicochemical Properties of the Dried Red Seaweeds Gracilaria edulis and Gracilaria corticata. Molecules, 24(12), 2225.

https://doi.org/10.3390/molecules24122225

25. Teixido, C., Castillo, P., Martinez-Vila, C., Arance, A., & Alos, L. (2021). Molecular markers and targets in melanoma. In Cells (Vol. 10, Issue 9). MDPI. https://doi.org/10.3390/cells10092320

26. Arnold, M., Singh, D., Laversanne, M., Vignat, J., Vaccarella, S., Meheus, F., Cust, A. E., de Vries, E., Whiteman, D. C., & Bray, F. (2022). Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatology, 158(5), 495.

https://doi.org/10.1001/jamadermatol.2022.0160

27. Hsu, P.-L., Jou, J., & Tsai, S.-J. (2019). TYRO3: A potential therapeutic target in cancer. Experimental Biology and Medicine, 244(2), 83–99. https://doi.org/10.1177/1535370219828195

28. Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C.

M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4). https://doi.org/10.3390/molecules27041326

29. Ghasemi, M., Turnbull, T., Sebastian, S., & Kempson, I. (2021). The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. International Journal of Molecular Sciences, 22(23), 12827. https://doi.org/10.3390/ijms222312827

30. Agu, P.C., Afiukwa, C.A., Orji, O.U. et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep 13, 13398 (2023). https://doi.org/10.1038/s41598-023-40160-2

31. Gurning K, Suratno S, Astuti E, Haryadi W. Untargeted LC/HRMS Metabolomics Analysis and Anticancer Activity Assay on MCF-7 and A549 Cells from Coleus amboinicus Lour Leaf

Extract. Iran J Pharm Res. 2024 Apr 20;23(1):e143494. doi: 10.5812/ijpr-143494. PMID: 39108647; PMCID: PMC11302430.

32. Niu, W. H., Wu, F., Cao, W. Y., Wu, Z. G., Chao, Y. C., Liang, C., et al. (2021). Network pharmacology for the identification of phytochemicals in traditional Chinese medicine for COVID-19 that may regulate interleukin-6. Biosci. Rep. 41, BSR20202583. doi:10.1042/BSR20202583

33. Gao, X., Li, S., Cong, C., Wang, Y., and Xu, L. (2021). A network pharmacology approach to estimate potential targets of the active ingredients of epimedium for alleviating mild cognitive impairment and treating alzheimer's disease. Evid. Based. Complement. Altern. Med. 2021, 2302680. doi:10.1155/2021/2302680.

34. Schreiber R.D., Old L.J., Smyth M.J. Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science. 2011;331:1565–1570. doi: 10.1126/science.1203486.

35. Gurzu S., Beleaua M.A., Jung I. The Role of Tumor Microenvironment in Development and Progression of Malignant Melanomas—A Systematic Review. Rom. J. Morphol. Embryol. 2018;59:23–28.

36. .Khair D.O., Bax H.J., Mele S., Crescioli S., Pellizzari G., Khiabany A., Nakamura M., Harris R.J., French E., Hoffmann R.M., et al. Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Front. Immunol. 2019;10:453. doi: 10.3389/fimmu.2019.00453.

37. .Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.-J., Rutkowski P., Lao C.D., Cowey C.L., Schadendorf D., Wagstaff J., Dummer R., et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019;381:1535–1546. doi: 10.1056/NEJMoa1910836.

38. Agrawal, K.K., Yadav, A., Kumar, S. et al. In silico assessment of antioxidant activity and toxicity profiling of bioactive molecules from Murraya koenigii. Discov Appl Sci 6, 523 (2024). https://doi.org/10.1007/s42452-024-06232-2

39. Udensi, U.K.; Tchounwou, P.B. Dual effect of oxidative stress on leukemia cancer induction and treatment. J. Exp. Clin. Cancer Res. 2014, 33, 106.

40. Arany, I.; Hall, S.; Reed, D.K.; Dixit, M. The pro-oxidant gene p66shc increases nicotine exposure-induced lipotoxic oxidative stress in renal proximal tubule cells. Mol. Med. Rep. 2016, 14, 2771–2777. Available online: https://www.spandidos-

publications.com/mmr/14/3/2771 (accessed on 30 April 2025)

Descargas

Publicado

17-10-2025

Cómo citar

[1]
2025. Hydropuntia edulis as a Nutritional Therapeutic Agent for Human Melanoma: In Silico Approach and In Vitro Validation for Functional Food Application. Nutrición Clínica y Dietética Hospitalaria. 45, 3 (Oct. 2025). DOI:https://doi.org/10.12873/.

Artículos similares

1-10 de 51

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a