Efecto aditivo in vitro de Chlorella sorokiniana en combinación con Vincristina sobre la inhibición del crecimiento de células de cáncer de colon HT-29
Efecto de Microalgas/quimioterapia contra cáncer de colon humano in vitro
DOI:
https://doi.org/10.12873/434hernandezPalavras-chave:
Chlorella sorokiniana, Cancer de colon, VincristinaResumo
Objetivo: Evaluar el efecto in vitro de la combinación de Chlorella sorokiniana con Vincristina contra el
crecimiento de células de cáncer de colon HT-29.
Material y método: Chlorella sorokiniana se cultivó en medio López-Chuken. El efecto inhibitorio de la microalga
sola y en combinación con Vincristina en el crecimiento tumoral se evaluó mediante la técnica de MTT, contra
células de cáncer de colon humano HT-29, y se analizó mediante el software SynergyFinder 2.0.
Resultados: El crecimiento Chlorella sorokiniana fue constante al día 28 a una temperatura de 34 oC ± 3 oC. El
efecto inhibitorio de Vincristina sobre células HT-29 fue del 60% a partir de 0.0037µg/mL. La inhibición por
Chlorella sorokiniana fue del 60% al 80% a las concentraciones de 106-108. Además, la combinación de
Vincristina/Chlorella inhibió el crecimiento tumoral entre 70% y 90%, siendo la concentración menor de
Chlorella la que mostró un mejor efecto en combinación con Vincristina. El análisis de los resultados en
SynergyFinder mostró un score de -0.708, determinando un efecto aditivo.
Conclusión: Chlorella sorokiniana presenta un efecto aditivo en combinación con Vincristina contra la línea de
cáncer de colon humano HT-29. La suplementación de C. sorokiniana en la dieta de pacientes con cáncer de
colon podría mejorar su tratamiento y por consecuencia su recuperación.
Referências
Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi DJ., John A, Lim YM, Kibria KMK,
Mohiuddin AKM, Ming LC, Goh KW, Hadi MA. Colorectal cancer: a review of
carcinogenesis, global epidemiology, current challenges, risk factors, preventive and
treatment strategies. Cancers. 2022; 14(7), 1732. doi:10.3390/cancers14071732.
Wu Y, Zhang J, Yu S, Li Y, Zhu J, Zhang K, Zhang R. Cell pyroptosis in health and
inflammatory diseases. Cell Death Discov. 2022; 8(1), 191. doi:10.1038/s41420-022-
-3.
Veettil SK, Wong TY, Loo YS, Playdon MC, Lai NM, Giovannucci EL, Chaiyakunapruk
N. Role of diet in colorectal cancer incidence: umbrella review of meta-analyses of
prospective observational studies. JAMA network open. 2021; 4(2), e2037341-
e2037341. doi:10.1001/jamanetworkopen.2020.37341.
Chen Y, Liao X, Li Y, Cao H, Zhang F, Fei B, Bao C, Cao H, Chen X, Gao X, Zhao W, Xu,
J. Effects of prebiotic supplement on gut microbiota, drug bioavailability, and
adverse effects in patients with colorectal cancer at different primary tumor
locations receiving chemotherapy: study protocol for a randomized clinical trial.
Trials. 2023; 24(1), 1-11. doi:10.1186/s13063-023-07137-y.
Ferdous UT, Nurdin A, Ismail S, Yusof ZNB. Evaluation of the antioxidant and
cytotoxic activities of crude extracts from marine Chlorella sp. Biocatal Agric
Biotechnol. 2023; 47, 102551. doi:10.1016/j.bcab.2022.102551.
Napolitano G, Fasciolo G, Salbitani G, Venditti P. Chlorella sorokiniana dietary
supplementation increases antioxidant capacities and reduces ros release in
mitochondria of hyperthyroid rat liver. Antioxidants. 2020; 9(9), 883. doi:
3390/antiox9090883.
Bito T, Okumura E, Fujishima M, Watanabe F. Potential of Chlorella as a dietary
supplement to promote human health. Nutrients. 202; 12(9), 2524. doi:
3390/nu12092524.
Chen W, Luo L, Han D, Long F, Chi Q, Hu Q. Effect of dietary supplementation with
Chlorella sorokiniana meal on the growth performance, antioxidant status, and
immune response of rainbow trout (Oncorhynchus mykiss). J Appl Phycol. 2021; 33,
-3122. doi:10.1007/s10811-021-02541-w.
González‐Mercado VJ, Sarkar A, Penedo FJ, Pérez‐Santiago J, McMillan S, Marrero
SJ, Marrero-Falcón MA, Munro, C. L. Gut microbiota perturbation is associated with
acute sleep disturbance among rectal cancer patients. J Sleep Res. 2020; 29(3),
e12915. doi:10.1111/jsr.12915.
López‐Chuken UJ, Young SD, Guzmán‐Mar JL. Evaluating a ‘biotic ligand
model’applied to chloride‐enhanced Cd uptake by Brassica juncea from nutrient
solution at constant Cd2+ activity. Environ Technol. 2010; 31(3), 307-318.
doi:10.1080/09593330903470685.
Ramírez-Villalobos JM, Romo-Sáenz CI, Morán-Santibañez KS, Tamez-Guerra P,
Quintanilla-Licea R, Orozco-Flores AA, Romero-Arguelles R, Tamez-Guerra R,
Rodríguez-Padilla C, Gomez-Flores, R. (2021). In vitro tumor cell growth inhibition
induced by Lophocereus marginatus (Dc.) S. Arias and Terrazas endophytic fungi
extracts. IJERPH. 2021;18(18), 9917. doi:10.3390/ijerph18189917.
Rodríguez-Garza NE, Quintanilla-Licea R, Romo-Sáenz, CI, Elizondo-Luevano JH,
Tamez-Guerra P, Rodríguez-Padilla C, Gomez-Flores, R. In vitro biological activity
and lymphoma cell growth inhibition by selected mexican medicinal plants. Life.
; 13(4), 958. doi:10.3390/life13040958.
Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: An interactive analysis and
consensus interpretation of multi-drug synergies across multiple samples. Nucleic
Acids Res. 2022; 50, W739–W743.
Wu S, Zhu W, Thompson P, Hannun YA. Evaluating intrinsic and non-intrinsic cancer
risk factors. Nat commun. 2018; 9(1), 3490. doi: 10.1038/s41467-018-05467-z.
Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden
patterns. J Thorac Dis. 2017; 9(3), 448.
Andinata B, Bachtiar A, Oktamianti P, Partahi JR, Dini MSA. A comparison of cancer
incidences between dharmais Cancer Hospital and GLOBOCAN 2020: A Descriptive
Study of Top 10 Cancer Incidences. Indonesian Journal of Cancer. 2023; 17(2), 119-
doi: 10.33371/ijoc.v17i2.982.
Xi Y, & Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl
Oncol. 2021; 14(10), 101174. doi.10.1016/j.tranon.2021.101174.
Lewandowska A, Rudzki G, Lewandowski T, Stryjkowska-Góra A, Rudzki S. Risk
factors for the diagnosis of colorectal cancer. Cancer Control. 2022; 29,
doi: 10.1177/10732748211056692.
Shivappa N, Godos J, Hébert JR, Wirth MD, Piuri G, Speciani AF, Grosso G. Dietary
inflammatory index and colorectal cancer risk—a meta-analysis. Nutrients. 2017;
(9), 1043. doi: 10.3390/nu9091043.
Thomas F, Rome S, Mery F, Dawson E, Montagne J, Biro PA, Beckmann C, Renaud F,
Poulin R, Raymound M, Ujvari B. Changes in diet associated with cancer: An
evolutionary perspective. Evol Appl. 2017;10(7), 651-657. doi: 10.1111/eva.12465.
Montassier E, Gastinne T, Vangay P, Al‐Ghalith G A, Bruley des Varannes S, Massart
S, Moreau P, Potel G, de La Cochetière MF, Batard E, Knights D. Chemotherapy‐
driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Thera. 2015; 42(5),
-528. doi: 10.1111/apt.13302.
Gerassy-Vainberg S, Blatt A, Danin-Poleg Y, Gershovich K, Sabo E, Nevelsky A, Daniel
S, Dahan A, Ziv O, Dheer R, Abreu MT, Koren O, Kashi Y, Chowers Y. Radiation
induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by
host cytokine induction. Gut. 2018; 67(1), 97-107. doi: 10.1136/gutjnl-2017-313789.
Bashiardes, S., Tuganbaev, T., Federici, S., & Elinav, E. The microbiome in anti-cancer
therapy. In Semin immunol. 2017; 32:74-81. doi.: 10.1016/j.smim.2017.04.001.
Ervin SM, Ramanan SV, Bhatt AP. Relationship between the gut microbiome and
systemic chemotherapy. Dig Dis Sci. 2020; 65, 874-884. doi: 10.1007/s10620-020-
-3.
Mego M, Holec V, Drgona L, Hainova K, Ciernikova S, Zajac V. Probiotic bacteria in
cancer patients undergoing chemotherapy and radiation therapy. Complemen Ther
Med. 2013; 21(6), 712-723. doi: 10.1016/j.ctim.2013.08.018.
Patel AK, Singhania RR, Awasthi MK Varjani S, Bhatia SK, Tsai ML, Hsieh SL, Chen
CW, Dong CD. Emerging prospects of macro-and microalgae as prebiotic. Microb
Cell Factories. 2021; 20(1), 112. doi: 10.1186/s12934-021-01601-7.
Abd El-Hack ME, Abdelnour S, Alagawany M, Abdo M, Sakr MA, Khafaga AF,
Mahgoub SA, Elnesr SS, Gebriel MG. Microalgae in modern cancer therapy: Current
knowledge. Biomed Pharmacother. 2019: 111, 42-50. doi:
1016/j.biopha.2018.12.069.
Lin SH, Li MH, Chuang KA, Lin NH, Chang CH, Wu HC, Chao YH, Lin CC, Pan IH, Perng
MD, Wen SF. Chlorella sorokiniana extract prevents cisplatin-induced myelotoxicity
in vitro and in vivo. Oxid Med Cell Longev. 2020; 7353618. doi:
1155/2020/7353618.
Adzahar NS, Basri DF, Latif ES, Sallehudin NJ. In vitro and in vivo cytotoxic effects of
chlorella against various types of cancer. IIUM Med J Malays. 2021; 20(1).
doi:10.31436/imjm.v20i1.1765.
Reyna-Martinez R, Gomez-Flores R, López-Chuken U, Quintanilla-Licea R, CaballeroHernandez D, Rodríguez-Padilla C, Beltrán-Rocha JC, Tamez-Guerra P. Actividad
antitumoral de Chlorella sorokiniana y Scenedesmus sp. microalgas originarias del
estado de Nuevo León, México. PeerJ. 2018; e4358. doi: 10.7717/peerj.4358
Downloads
Publicado
Como Citar
Licença
Copyright (c) 2023 Nutrición Clínica y Dietética Hospitalaria
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)