Boiling water extraction of mangrove Sonneratia alba fruit as an antioxidant functional food: combined in vitro and pharmacoinformatics studies.
DOI:
https://doi.org/10.12873/444dotulongPalavras-chave:
Sonneratia alba fruit, boiling water, DPPH, Molecular Docking, In SilicoResumo
Introduction: Extraction of antioxidants from mangrove fruit powder Sonneratia alba using boiling water as a solvent is very beneficial, because in addition to using a solvent that is safe for consumers, the results of this study can also be developed in the future as antioxidant functional foods.
Aims and Methods: The purpose of this study was to study the antioxidant activity of boiling water extract of mangrove fruit S. albakindly in-vitro nor in-silico pharmacoinformatics.
Results: The best results in this first stage were found in the treatment of mangrove fruit S. alba Sun drying extracted with boiling water for 5 minutes had the best antioxidant activity, namely IC50DPPH = 2.69 ± 0.32 µg/ml which is smaller than the positive control, namely vitamin C, which has IC50DPPH= 5.04 ± 0.16µg/ml. The best treatment in the first stage is continued in the second stage, namely GC-MS analysis to determine the type of compounds in the extract, and then do the analysis in-silico by means of molecular docking. The results of the GC-MS characterization showed 39 compounds that were in the category to be continued in the pharmacoinformatics via molecular docking process, with the docking results showing the bioactive compound Ergosterol; Estra-1,3,5(10)-trien-17ß-ol; Ergosta-5,8,22-trien-3-ol, (3ß,22E)- ; 9(11)-Dehydroergosterol tosylate ; Dasycarpidan-1-methanol, acetate (ester) shows a very promising value of binding affinity towards 4 protein targets, namely Cytochrome c peroxidase, Fibroblast collagenase, Human ROS1 Kinase Domain and Hyaluronidase with vitamin C as a control.
Conclusion: Based on these findings, boiling water extract of mangrove fruit S. alba this can provide a good potential in the discovery and development of candidate new antioxidant compounds.
Referências
Halidah and Kamah, H. 2013. Avicenia marina (Forsk) Vierh and Sonnerati alba Smith on Sand Substrates. Indonesian Forest Rehabilitation Journal. 1(1), September 2013::51-58
Delta M, Rozirwan and Hendri M. 2021. Antioxidant Activity of Mangrove Leaf and Bark ExtractsSonneratia albain Tanjung Carat, Banyuasin Regency, South Sumatra Province. Maspari Journal 13(2):129-144
Wonggo, D. Berhimpon, S., Kurnia, D., Dotulong, V. 2017. Antioxidant Activities Of Mangrove Fruit (Sonneratia Alba) Taken From Wori Village, North Sulawesi, Indonesia. International Journal of Chemtech Research. 10(12): 284–290.
Dotulong, V., Wonggo, D. And Montolalu, L. A. D. 2018. Phytochemical
Content, Total Phenols, And Antioxidant Activity Of Mangrove Sonneratia
Alba young Leaf Through Different Extraction Methods And Solvents.
International Journal Of Chemtech Research, 11(11): 356–363.
Dotulong V, Wonggo D and Montolalu L. A. D. Y. 2021. Evaluation of Secondary Metabolites and Antioxidant Activity of Water, Ethyl Acetate and
Hexane Fractions from the Mangrove Young Leaves Sonneratia alba.Chemical Science International Journal. 30(2): 23-32
Land H, Humble MS. YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. Methods Mol Biol. 2018;1685:43-67. doi: 10.1007/978-1-4939-7366-8_4. PMID: 29086303.
Wahyuni W. T, Darusman, L. K dan Surya N. K. 2015. Potency of Rhizopora spp. Extracts as Antioxidant and Inhibitor of Acetylcholinesterase. Procedia Chemistry. 16: 681-686. 2015
Septiana, A. and Parwata. A. 2018. Determination of Total Phenol Levels, Total Flavonoid Levels and Phytochemical Screening of Gaharu Leaf Ethanol Extract (Gyrinops verstegi). Journal, Mathematics and Science. 12(1): 78- 89
Thirunavukkarasu, P., Ramanathan, T., Shanmugapriya, R., Saranya, A. R., Muthazagan, K., dan Balasubramanian, T. 2013. Screening of Anti-Oxidant Status in Selected Mangrove Plants in Pichvaram Mangrove Forest (South East Coast of India). International Journal of Bioassays. 02 (03): 537-541
Sofia, S. and Teresa M. M. V. 2016. Investigation of bioactive compounds and antioxidant activity of excoecaria agallocha, l. International Journal Pharmaceutical science and Research.7 (12):5062-5066
Hossain, S. J., Pervin, T., and Suma, S. 2015. Effects of Cooking Methods at Different Time Durations on Total Phenolics and Antioxidant Activities of Fresh and Dried-stored Fruits of Sonneratia apetala(Buch.-Ham.). International Food Research Journal. 23(2): 556-563
Lovly, M.S. from Teresa, M.V. 2017.In vitro bioactivity and phytochemical characterization of Pinch fruticans.Wurmb: a mangrove from Kerala, India. International Research Journal of Biological Sciences. 6(6): 42-52.
Moteriya, P., Dalsaniya, A., and Chanda, S., 2015. Antioxidant and antimicrobial activity of a mangrove plant Avicennia marina(Forsk.) Journal of Coastal Life Medicine. 3 (9):713-717.
Mahmiah, Giman, Aminah, N.S., dan Tanjung, M., 2016. Antioxidant Activity of Methanol Extracts from the Stem Bark of Mangrove Rhizophora mucronata.Proceeding ICMHS.ISBN 978-602-60569-3-1
Sepriyani, H., Devitria, R., Surya, A., Sari, S. 2020. Antioxidant Activity of Methanol Extract of Papaya Leaves (Carica Papaya L) Using the DPPH Method. 9(1): 8–11.
Ralte, L., Khiangte, L., Thangjam, N. M., Kumar, A., & Singh, Y. T. (2022). GC–MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Scientific Reports, 12(1), 3395. https://doi.org/10.1038/s41598-022-07320-2
Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. In Molecules (Vol. 20, Issue 7, pp. 13384–13421). MDPI AG. https://doi.org/10.3390/molecules200713384
Atkinson , J. , Kapralov , A. A. , Yanamala , N. , Tyurina , Y. Y. , Amoscato , A. A. , Pearce , L. , Peterson , J. , Huang , Z. , Jiang , J. , Samhan-Arias , A. K. , Maeda , . A. , Feng , W. , Wasserloos , K. , Belikova , N. A. , Tyurin , V. A. , Wang , H. , Fletcher , J. , Wang , Y. , Vlasova , I. I. , ... Kagan, V. E. (2011). A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death.Nature Communications, 2(1), 497. https://doi.org/10.1038/ncomms1499
Shehab, W., Aziz, M., Elhoseni, N., Assy, M., Abdellattif, M., & Hamed, E. (2022). Design, Synthesis, Molecular Docking, and Evaluation Antioxidant and Antimicrobial Activities for Novel 3-Phenylimidazolidin-4-One and 2-Aminothiazol-4-One Derivatives. Molecules, 27(3), 767. https://doi.org/10.3390/molecules27030767
Osorio, E., Bravo, K., Cardona, W., Yepes, A., Osorio, E. H., & Coa, J. C. (2019). Antiaging activity, molecular docking, and prediction of percutaneous absorption parameters of quinoline–hydrazone hybrids. Medicinal Chemistry Research, 28(11), 1959–1973. https://doi.org/10.1007/s00044-019-02427-0
Syamsul, E. S., Umar, S., Wahyuni, F. S., Martien, R., & Hamidi, D. (2022). Anti-aging Activity, In Silico Modeling and Molecular Docking from Sonneratia Caseolaris. Open Access Macedonian Journal of Medical Sciences, 10(A), 1471–1477. https://doi.org/10.3889/oamjms.2022.10558
Abo Elmaaty, A., Hamed, M. I. A., Ismail, M. I., B. Elkaeed, E., S. Abulkhair, H., Khattab, M., & Al-Karmalawy, A. A. (2021). Computational Insights on the Potential of Some NSAIDs for Treating COVID-19: Priority Set and Lead Optimization. Molecules, 26(12), 3772. https://doi.org/10.3390/molecules26123772
Wang, W., Gan, N., Sun, Q., Wu, D., Gan, R., Zhang, M., Tang, P., & Li, H. (2019). Study on the interaction of ertugliflozin with human serum albumin in vitro by multispectroscopic methods, molecular docking, and molecular dynamics simulation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 219, 83–90. https://doi.org/10.1016/j.saa.2019.04.047
Friederich, P., Konrad, M., Strunk, T., & Wenzel, W. (2018). Machine learning of correlated dihedral potentials for atomistic molecular force fields. Scientific Reports, 8(1), 2559. https://doi.org/10.1038/s41598-018-21070-0
Tallei, T. E., Tumilaar, S. G., Lombogia, L. T., Adam, A. A., Sakib, S. A., Emran, T. B., & Idroes, R. (2021). Potential of betacyanin as inhibitor of SARS-CoV-2 revealed by molecular docking study. IOP Conference Series: Earth and Environmental Science, 711(1), 012028. https://doi.org/10.1088/1755-1315/711/1/012028
Sefren Geiner, T., Fatimawali, F., Nurdjannah Jane, N., Yunus, E., Rinaldi, I., Ahmad Akroman, A., Ahmed, R., Talha Bin, E., & Trina Ekawati, T. (2020). The potential of leaf extract of Pangium edule Reinw as HIV-1 protease inhibitor: A computational biology approach. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2021.110112
Vladilo, G., & Hassanali, A. (2018). Hydrogen Bonds and Life in the Universe. Life, 8(1), 1. https://doi.org/10.3390/life8010001
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
Montanari, F., & Ecker, G. F. (2015). Prediction of drug–ABC-transporter interaction — Recent advances and future challenges. Advanced Drug Delivery Reviews, 86, 17–26. https://doi.org/10.1016/j.addr.2015.03.001
Kirchmair, J., Göller, A. H., Lang, D., Kunze, J., Testa, B., Wilson, I. D., Glen, R. C., & Schneider, G. (2015). Predicting drug metabolism: experiment and/or computation? Nature Reviews Drug Discovery, 14(6), 387–404. https://doi.org/10.1038/nrd4581
Downloads
Publicado
Como Citar
Edição
Seção
Categorias
Licença
Copyright (c) 2024 Nutrición Clínica y Dietética Hospitalaria
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)