Impacto da Qualidade da Dieta no Risco de Síndrome Metabólica entre Pescadores e Agricultores de Dendê: Um Estudo de Caso-Controle Usando o Indicador de Dieta Saudável (HDI)

Autores

  • Besti Verawati 1Postgraduate in Nutrition Science, Department of Community Nutrition, Faculty of Human Ecology, Institut Pertanian Bogor, Bogor, Indonesia 2Department of Nutrtition Faculty of Science, Universitas of Pahlawan Tuanku Tambusai, Riau, Indonesia
  • Hadi Riyadi Department of Community Nutrition, Faculty of Human Ecology, Institut Pertanian Bogor, Bogor, Indonesia
  • Ali Khomsan Department of Community Nutrition, Faculty of Human Ecology, Institut Pertanian Bogor, Bogor, Indonesia
  • Ikeu Ekayanti Department of Community Nutrition, Faculty of Human Ecology, Institut Pertanian Bogor, Bogor, Indonesia

DOI:

https://doi.org/10.12873/452rifqi

Palavras-chave:

'Metabolic syndrome', diet quality, Indonesia

Resumo

Introduction: Metabolic syndrome (MS) is a set of risk factors that increase the probability of developing cardiovascular diseases (CVD) and diabetes mellitus (DM). In Indonesia, the prevalence of SM is increasing, with local fishermen and farmers presenting higher taxa in comparison with other populations. This study aimed to explore the impact of the quality of the SM diet among fishermen and farmers in Dendê in Aceh, Indonesia.

Methods: This community-based case-control study included 240 community participants between 35 and 65 years old, divided into four groups: local fishermen and farmers with (cases) and sem (controls) SM. The data collection took place between April and July 2024, covering sociodemographic characteristics, anthropometric measurements, blood pressure, lipid profile, blood glucose levels and nutritional safety. Diet quality was assessed using the Healthy Diet Indicator (HDI), based on a 24-hour food reminder. The statistical analysis was performed with SPSS version 27, using binary logistic regression.

Results: Among fishermen, diet quality (HDI pontuação) showed a significant association with the risk of SM (OR=3.296, p=0.000). The tobacco status, identity and income do not present significant effects. Among farmers, diet quality is also associated with the risk of SM (OR=1.880, p=0.000), and the performance showed a significant relationship with the risk of SM (p=0.018).

Conclusion: Diet quality plays a crucial role in the risk of metabolic syndrome among local fishermen and farmers, with inadequate dietary patterns increasing the risk of MS in both groups. These achados provide a basis for public health interventions aimed at preventing metabolic syndrome in certain communities.

Referências

1. Cota ESLA, Gouvea TM, Fernandes FC, Carrillo MRGG, Veloso VM, Santos Filho AF, et al. Yoga practice can reduce metabolic syndrome and cardiovascular risk in climacteric women. J Behav Med. 2023. https://doi.org/10.1007/s10865-023-00420-y.

2. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and

Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16): 1640–5. https://doi.org/10.1161/CIRCULATIONAHA.109.192644.

3. Lim S, Shin H, Song JH, Kwak SH, Kang SM, Won Yoon J, et al. Increasing prevalence of metabolic syndrome in Korea. Diabetes Care. 2011;34(6):1323–8. https://doi.org/10.2337/dc10-2109.

4. Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2019: Indonesia. Seattle, WA: IHME; 2020.

5. International Diabetes Federation. The IDF consensus worldwide definition of the metabolic syndrome. 2020.

6. Herningtyas EH, Ng TS. Prevalence and distribution of metabolic syndrome and its components among provinces and ethnic groups in Indonesia. BMC Public Health. 2019;19(1):377. https://doi.org/10.1186/s12889-019-6711-7.

7. Ephraim RKD, Owusu VB, Asiamah J, Mills A, Abaka-Yawson A, Kpene GE, et al. Predicting type 2 diabetes mellitus among fishermen in Cape Coast: A comparison between the FINDRISC score and the metabolic syndrome. J Diabetes Metab Disord. 2020;19(2): 1317–24. https://doi.org/10.1007/s40200-020-00650-w.

8. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: Prevalence in worldwide populations. Endocrinol Metab Clin North Am. 2004;33(2):351–75. https://doi.org/10.1016/j.ecl. 2004.03.005.

9. Jamilah J, Mawardati M. Hubungan tingkat kemiskinan dengan pemanfaatan sumberdaya perikanan tangkap pada kawasan minapolitan. J Ekon Pertan Agribisnis. 2019;3(2):336–47. https://doi.org/ 10.21776/ub.jepa.2019.003.02.10.

10. Jamilah, Mawardati, Ghazali Syamni. Kontribusi usaha tani kelapa sawit dalam meningkatkan kesejahteraan rumah tangga petani di Kabupaten Aceh Utara. J Unigal. 2022;8:387–95.

11. Danquah I, Galbete C, Meeks K, Nicolaou M, Klipstein-Grobusch K, Addo J, et al. Food variety, dietary diversity, and type 2 diabetes in a multi-center cross-sectional study among Ghanaian migrants in Europe and their compatriots in Ghana: The RODAM study. Eur J Nutr. 2018;57(8):2723–33. https://doi.org/10.1007/s00394-0171538-4.

12. Xu Z, Steffen LM, Selvin E, Rebholz CM. Diet quality, change in diet quality and risk of incident CVD and diabetes. Public Health Nutr. 2020;23(2):329–38. https://doi.org/10.1017/S136898001900212X.

13. Huijbregts P, Feskens E, Räsänen L, Fidanza F, Nissinen A, Menotti A, et al. Dietary pattern and 20 year mortality in elderly men in Finland, Italy, and the Netherlands: Longitudinal cohort study. BMJ. 1997;315(7099):13–7. https://doi.org/10.1136/bmj.315.7099.13.

14. Jankovic N, Geelen A, Streppel MT, De Groot LC, Kiefte-de Jong JC, Orfanos P, et al. WHO guidelines for a healthy diet and mortality from cardiovascular disease in European and American elderly: The CHANCES project. Am J Clin Nutr. 2015;102(4):745–56. https://doi.org/10.3945/ajcn.114.095117.

15. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention. Circulation. 2009;120(16):1640– 5. https://doi.org/10.1161/CIRCULATIONAHA.109.192644.

16. Ford ES, Li C, Zhao G. Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes. 2010;2(3):180–93. https://doi.org/10.1111/j.17530407.2010.00078.x.

17. Houti L, Hamani-Medjaoui I, Lardjam-Hetraf SA, Ouhaibi-Djellouli H, Chougrani S, Goumidi L, et al. Prevalence of metabolic syndrome and its related risk factors in the city of Oran, Algeria: The ISOR Study. Ethn Dis. 2016;26(1):99. https://doi.org/10.18865/ ed.26.1.99.

18. Rus M, Crisan S, Andronie-Cioara FL, Indries M, Marian P, Pobirci OL, et al. Prevalence and risk factors of metabolic syndrome: A prospective study on cardiovascular health. Medicina. 2023; 59(10):1711. https://doi.org/10.3390/medicina59101711.

19. Engin A. The definition and prevalence of obesity and metabolic syndrome. In: Engin AB, Engin A, editors. Obesity and Lipotoxicity. Vol. 960. Springer International Publishing; 2017. p. 1–17. https://doi.org/10.1007/978-3-319-48382-5_1.

20. Kwon H, Kim D, Kim JS. Body fat distribution and the risk of incident metabolic syndrome: A longitudinal cohort study. Sci Rep. 2017;7(1):10955. https://doi.org/10.1038/s41598-017-09723-y.

21. Van der Voet H, Slob W. Integration of probabilistic exposure assessment and probabilistic hazard characterization. Risk Anal. 2007;27(2):351-71.

22. Neuhouser ML, Schwarz Y, Wang C, Breymeyer K, Coronado G, Wang CY, et al. A low-glycemic load diet reduces serum C-reactive protein and modestly increases adiponectin in overweight and obese adults. J Nutr. 2012;142(2):369-74.

23. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012; 70(1):3-21.

24. Willett WC, Stampfer MJ. Current evidence on healthy eating. Annu Rev Public Health. 2013;34:77-95.

25. Mozaffarian D, Ludwig DS. Dietary guidelines in the 21st century—a time for food. JAMA. 2010;304(6):681-2.

26. Monteiro CA, Cannon G, Moubarac JC, Levy RB, Louzada ML, Jaime PC. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018;21(1):5-17.

27. Muhdar IN, Riyadi H, Khomsa A, Jauhari M. Physical activity, percent body fat, visceral fat, ASMI, and blood pressure with obesity in indonesian older women: a cross-sectional study. Nutr Clín Diet Hosp. 2025; 45(1):346-353DOI: 10.12873/451muhdar.

28. Swinburn BA, Kraak VI, Allender S, Atkins VJ, Baker PI, Bogard JR, et al. The global syndemic of obesity, undernutrition, and climate change: The Lancet Commission report. Lancet. 2019; 393(10173):791-846.

29. Malik VS, Hu FB. Sugar-sweetened beverages and cardiometabolic health: An update of the evidence. Nutrients. 2019;11(8):1840.

30. FAO, WHO. Sustainable healthy diets: Guiding principles. Rome: Food and Agriculture Organization of the United Nations & World Health Organization; 2019.

Downloads

Publicado

2025-05-07

Como Citar

[1]
2025. Impacto da Qualidade da Dieta no Risco de Síndrome Metabólica entre Pescadores e Agricultores de Dendê: Um Estudo de Caso-Controle Usando o Indicador de Dieta Saudável (HDI). Nutrición Clínica y Dietética Hospitalaria. 45, 2 (maio 2025). DOI:https://doi.org/10.12873/452rifqi.

Artigos Semelhantes

1-10 de 289

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)