Design and psychometric properties of the Ultra-Processed Food Consumption Scale in university students
DOI:
https://doi.org/10.12873/Keywords:
ultra-processed foods, reliability, validity, university studentsAbstract
Introduction. The excessive increase in the consumption
of ultra-processed foods has important implications for people’s health, so it is necessary to have tools with psychometric properties of validity and reliability for their measurement.
Objective. The present study aimed to analyze the evi
dence of validity and reliability of the ultra-processed food consumption scale in university students.
Method. A total of 203 university students from north
western Mexico participated. 77.3% were women, 21.7%
men, and 1% did not specify, with ages between 18 and
56 years (M = 20.82, SD = 4.24). Exploratory factor analyses (EFA) and confirmatory factor analyses (CFA) were performed, identifying items that did not contribute significantly to the factor structure.
Results. After the EFA and CFA, 8 of the original 18 items
were eliminated, leaving a final version of 10 items that presented adequate levels of fit to the proposed unidimensional model.
Conclusions. It is concluded that the scale has evidence of internal validity and reliability for measuring ultra-processed food consumption in university students.
References
1. Monteiro CA, Cannon G, Levy RB, Moubarac JC, Jaime P, Martins AP, et al. NOVA. The star shines bright. World Nutr. 2016;7(1-3):28-38.
2. Sekyi E, Agyapong NAF, Eshun G. Consumption of foods according to the NOVA classification, metabolic outcomes, and barriers to healthy eating among university students. Food Sci Nutr. 2024;12:1983-94. https://doi.org/10.1002/fsn3.3894
3. Monteiro CA, Cannon G. What are ultra-processed products. World Nutr. 2012;3(6):257-68.
4. Popkin BM. The impact of ultra-processed foods on health. In: 2030 - Food, agriculture and rural development in Latin America and the Caribbean. Santiago: FAO; 2020.
5. Organización Panamericana de la Salud. Alimentos y bebidas ultraprocesados en América Latina: tendencias, efecto sobre la obesidad e implicaciones para las políticas públicas. Washington, DC: OPS; 2015.
6. UNICEF. La mala alimentación está perjudicando la salud de la infancia mundialmente. 2019. Disponible en: https://www.unicef.org/mexico/comunicados-prensa/la-mala-alimentación-está-perjudicando-la-salud-de-la-infancia-mundialmente
7. Calvo-Porral C, Rivaroli S, Orosa-González J. Proposal and validation of a measurement scale of the acceptance of ultra-processed food products. Foods. 2024;13(10):1481. https://doi.org/10.3390/foods13101481
8. Hoil Sosa CG, Suárez Lara GA, Velázquez Melken LE, et al. Diseño y validación de la escala de actitudes hacia el consumo de alimentos ultraprocesados en estudiantes de Ciencias de la Salud. Acta Universitaria. 2024;34:1-17. https://doi.org/10.15174/au.2024.4126
9. Aguilar-Zavala H, Tovar-Vega AR, Briseño-Rodríguez II. Construcción y validación del cuestionario de consumo de alimentos ultraprocesados (CAUP) para población mexicana. Arch Latinoam Nutr. 2023;73(S1):68.
10. Martínez-Pérez C, Daimiel L, Climent-Mainar C, et al. Desarrollo integrador de un cuestionario corto de cribado de consumo de alimentos altamente procesados (sQ-HPF). Int J Behav Nutr Phys Act. 2022;19:6. https://doi.org/10.1186/s12966-021-01240-6
11. Montero I, León OG. A guide for naming research studies in psychology. Int J Clin Health Psychol. 2007;7(3):847-62.
12. Monteiro CA, Cannon G, Levy RB, Moubarac JC, Jaime P, Martins AP, et al. NOVA. The star shines bright. World Nutr. 2016;7(1-3):28-38.
13. Romo-Avilés M, Ortiz-Hernández L. Contribution of NOVA food groups to energy and nutrient supply in Mexican households. Salud Publica Mex. 2019;61(2):155-65. https://doi.org/10.21149/8923
14. Gaona-Pineda EB, Martínez-Tapia B, Arango-Angarita A, Valenzuela-Bravo D, Gómez-Acosta LM, Shamah-Levy T, et al. Consumo de grupos de alimentos y factores sociodemográficos en población mexicana. Salud Publica Mex. 2018;60(3):272-82. https://doi.org/10.21149/8803
15. Elosua Oliden P, Zumbo BD. Coeficientes de fiabilidad para escalas de respuesta categórica ordenada. Psicothema. 2008;20(4):896-901.
16. Ventura-León JL, Caycho-Rodríguez T. El coeficiente Omega: un método alternativo para la estimación de la confiabilidad. Rev Latinoam Cienc Soc Niñez Juv. 2017;15(1):625-7.
17. Steppan M, Piontek D, Kraus L. The effect of sample selection on the distinction between alcohol abuse and dependence. Int J Alcohol Drug Res. 2014;3(2):159-68. https://doi.org/10.7895/ijadr.v3i2.100
18. Pérez E, Medrano LA, Sánchez Rosas J. El Path Analysis: conceptos básicos y ejemplos de aplicación. Rev Argent Cienc Comport. 2013;5(1):52-66.
19. Santoyo VC, Mendoza SL, Espinosa M. Análisis factorial exploratorio: fundamentos y aplicación. Rev Psicol. 2017;12(2):45-60.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Nutrición Clínica y Dietética Hospitalaria

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los lectores pueden utilizar los textos publicados de acuerdo con la definición BOAI (Budapest Open Access Initiative)
