Upper limb reaction time by chronological age and maturity status in adolescents

Authors

  • Marco Cossio Bolaños Universidad Católica del Maule, Talca, Chile.
  • Jose Sulla-Torres Universidad Católica Santa Maria, Arequipa, Peru https://orcid.org/0000-0001-5129-430X
  • Nadia Chavez-Salas Universidad Católica Santa Maria, Arequipa, Peru
  • Maria Valverde-Riveros Universidad Católica Santa Maria, Arequipa, Peru
  • Nicolas Vidal-Fernandez Universidad Católica del Maule
  • Rossana Gomez-Campos Universidad Católica del Maule

DOI:

https://doi.org/10.12873/454cossio

Keywords:

reaction time, age, maturation

Abstract

Introduction:

Reaction time is important in various situations, as it influences quick decision-making and the performance of daily activities.

Objective: To correlate upper limb reaction time [TRES (expressed in hits and execution time)] with chronological age and maturity in young non-athletes. FITLIGHT® technology and system were used for this purpose.

Methods: A correlational study was conducted on 73 young people aged 12 to 20 (40 males and 33 females). The sample selection was non-probabilistic. Weight and height were assessed. Body mass index (BMI) was calculated. Maturity status was determined using a regression equation that takes into account sex, chronological age, and height. The FITLIGHT® system was used for assessment (number of hits and 10 repetitions with both hands in seconds).

Results: Chronological age showed low positive correlations with the number of hits in both sexes (men r=0.13 and women r=0.29). By maturity status, the correlations increased significantly in both sexes (males r=0.16 and females r=0.36). The correlations between maturity status and number of correct answers were negative and low (r = -0.11 in males and -0.25 in females), and between maturity status and time taken for 10 repetitions were low to moderate in both sexes (in males r = -0.13 and in females r = -0.28).

Conclusion: TRES in adolescents and young adults showed a stronger association with maturity than with chronological age. In addition, a similar number of correct responses was observed in both sexes, but males were faster, suggesting that maturity influences motor efficiency, especially in females.

References

REFERENCIAS

1. Harrar, V., & Harris, LR. The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Exp Brain Res [Internet]. 2008;186(4):517–24. http://dx.doi.org/10.1007/s00221-007-1253-0 DOI: https://doi.org/10.1007/s00221-007-1253-0

2. llamkar, KR. Analysis of human information processing in performance and cognition. Int J Res Health Sci 2014; 2(1): 36-40. o erkd7 mttp7//www.cgrms.nkd/cssuos.pmp;vhi4Ukiudo6&css4Cssuo8

3. Göral, K., Saygın, Ö., & İrez GB. Profesyonel futbolcuların oynadıkları mevkilere göre görsel ve işitsel reaksiyon sürelerinin incelenmesi. Selçuk Üniversitesi Beden Eğitimi ve Spor Bilim Dergisi. 2012;14(1):5–11.

4. Butler, A.A., Menant, J.C., Tiedemann, A.C., & Lord, S.R. Age and gender differences in seven tests of functional mobility. J Neuroeng Rehabil [Internet]. 2009;6(1). http://dx.doi.org/10.1186/1743-0003-6-31 DOI: https://doi.org/10.1186/1743-0003-6-31

5. Cano, L.A., Gerez, G.D., García, M.S., Albarracín, A.L., Farfán, F.D., & Fernández-Jover, E. Decision-making time analysis for assessing processing speed in athletes during motor reaction tasks. Sports [Internet]. 2024;12(6):151. http://dx.doi.org/10.3390/sports12060151 DOI: https://doi.org/10.3390/sports12060151

6. Wilke, J., Vogel, O. Computerized cognitive training with minimal motor component improves lower limb choice-reaction time. J Sports Sci Med. 2020;19(3):529–34. PMID: 32874106; PMCID: PMC7429437.

7. Strick, P.L., Dum, R.P., & Rathelot, J.A. The cortical motor areas and the emergence of motor skills: A neuroanatomical perspective. Annu Rev Neurosci [Internet]. 2021;44(1):425–47. http://dx.doi.org/10.1146/annurev-neuro-070918-050216 DOI: https://doi.org/10.1146/annurev-neuro-070918-050216

8. Appelbaum, L.G., & Erickson, G. Sports vision training: A review of the state-of-the-art in digital training techniques. Int Rev Sport Exerc Psychol [Internet]. 2018;11(1):160–89. http://dx.doi.org/10.1080/1750984x.2016.1266376 DOI: https://doi.org/10.1080/1750984X.2016.1266376

9. Hassan, A.K., Alibrahim, M.S., & Sayed Ahmed, Y.A.R. The effect of small-sided games using the FIT LIGHT training system on some harmonic abilities and some basic skills of basketball players. Front Sports Act Living [Internet]. 2023;5:1080526. http://dx.doi.org/10.3389/fspor.2023.1080526 DOI: https://doi.org/10.3389/fspor.2023.1080526

10. Barros Suazo, T.B., Vidal-Espinoza, R., Gomez-Campos, R., Guzman, A.B., Cossio Bolaños, M., & Urra Albornoz, C. Comparación de la memoria de trabajo y la velocidad de reacción de miembros superiores entre jóvenes tenismesistas y estudiantes universitarios. Sportis Sci J Sch Sport Phys Educ Psychomot [Internet]. 2025;11(2):1–14. http://dx.doi.org/10.17979/sportis.2025.11.2.11429 DOI: https://doi.org/10.17979/sportis.2025.11.2.11429

11. Myers, L., Toonstra, J.L., & Cripps, A.E. The test-retest reliability and minimal detectable change of the FitLight TrainerTM. International Journal of Athletic Therapy and Training. 2022;6:1–5.

12. Van Praagh E, Dor?? E. Short-term muscle power during growth and maturation. Sports Med [Internet]. 2002;32(11):701–28. http://dx.doi.org/10.2165/00007256-200232110-00003 DOI: https://doi.org/10.2165/00007256-200232110-00003

13. Yapici, H., Gulu, M., Yagin, F.H., Eken, O., Gabrys, T., & Knappova, V. Exploring the relationship between biological maturation level, muscle strength, and muscle power in adolescents. Biology (Basel) [Internet]. 2022;11(12):1722. http://dx.doi.org/10.3390/biology11121722 DOI: https://doi.org/10.3390/biology11121722

14. Arain, M., Haque, M., Johal, L., Mathur, P., Nel, W., Rais, A., Sandhu, R., & Sharma, S. (2013). Maturation of the adolescent brain. Neuropsychiatric disease and treatment, 9, 449–461. https://doi.org/10.2147/NDT.S39776 DOI: https://doi.org/10.2147/NDT.S39776

15. Sociedad Internacional para el Avance de la Kineantropometría. Estándares internacionales para la valoración antropométrica. Australia; 2001.

16. Moore, S. A., McKay, H. A., Macdonald, H., Nettlefold, L., Baxter-Jones, A. D., Cameron, N., & Brasher, P. M. (2015). Enhancing a Somatic Maturity Prediction Model. Medicine and science in sports and exercise, 47(8), 1755–1764. https://doi.org/10.1249/MSS.0000000000000588 DOI: https://doi.org/10.1249/MSS.0000000000000588

17. Badau, D., Stoica, A. M., Litoi, M. F., Badau, A., Duta, D., Hantau, C. G., Sabau, A. M., Oancea, B. M., Ciocan, C. V., Fleancu, J. L., & Gozu, B. (2023). The Impact of Peripheral Vision on Manual Reaction Time Using Fitlight Technology for Handball, Basketball and Volleyball Players. Bioengineering (Basel, Switzerland), 10(6), 697. https://doi.org/10.3390/bioengineering10060697 DOI: https://doi.org/10.3390/bioengineering10060697

18. Strykalenko, Y., Huzar, V., Shalar, O., Oloshynov, S., Homenko, V., & Svirida, V. Physical fitness assessment of young football players using an integrated approach. J Phys Educ Sport. 2021;21(1):360–6.

19. Santos, V., Casanova, N., Marconcin, P., Willig, R., Vidal-Conti, J., Soares, D., & Flôres, F. (2025). Physical fitness as a predictor of reaction time in soccer-playing children. PloS one, 20(3), e0320147. https://doi.org/10.1371/journal.pone.0320147 DOI: https://doi.org/10.1371/journal.pone.0320147

20. Roivainen, E., Suokas, F., & Saari, A. (2021). An examination of factors that may contribute to gender differences in psychomotor processing speed. BMC psychology, 9(1), 190. https://doi.org/10.1186/s40359-021-00698-0 DOI: https://doi.org/10.1186/s40359-021-00698-0

21. Peters, M., & Campagnaro, P. Do women really excel over men in manual dexterity? J Exp Psychol Hum Percept Perform [Internet]. 1996;22(5):1107–12. http://dx.doi.org/10.1037/0096-1523.22.5.1107 DOI: https://doi.org/10.1037//0096-1523.22.5.1107

22. Macdermid, J.C., Fehr, L., & Lindsay, K. The effect of physical factors on grip strength and dexterity. Br J Hand Ther [Internet]. 2002;7(4):112–8. http://dx.doi.org/10.1177/175899830200700401 DOI: https://doi.org/10.1177/175899830200700401

23. Best, O., & Ban, S. (2021). Adolescence: physical changes and neurological development. British journal of nursing (Mark Allen Publishing), 30(5), 272–275. https://doi.org/10.12968/bjon.2021.30.5.272 DOI: https://doi.org/10.12968/bjon.2021.30.5.272

24. Sturman, D. A., & Moghaddam, B. (2011). The neurobiology of adolescence: changes in brain architecture, functional dynamics, and behavioral tendencies. Neuroscience and biobehavioral reviews, 35(8), 1704–1712. https://doi.org/10.1016/j.neubiorev.2011.04.003 DOI: https://doi.org/10.1016/j.neubiorev.2011.04.003

Downloads

Published

2025-11-26

Issue

Section

Research articles

Categories

How to Cite

[1]
2025. Upper limb reaction time by chronological age and maturity status in adolescents. Nutrición Clínica y Dietética Hospitalaria. 45, 4 (Nov. 2025). DOI:https://doi.org/10.12873/454cossio.

Similar Articles

1-10 of 316

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>